Skip to main content
Log in

Facile synthesis of low temperature sintering Ag nanopaticles for printed flexible electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver nanoparticles with small particle size distribution and good dispersibility were synthesized through a facile chemical reduction method. In the progress, AgNO3 was used as the precursor, polyacrylic acid and ethanol amine were introduced as the protective agent, hydrazine hydrate was chosen as the reduce agent. Diameter of the resulted monodisperse silver nanoparticles is between 50 and 70 nm. Then, the obtained silver nanoparticles were well dispersed in the oil-based ink, which can be printed on a flexible polyimide substrate to form the conductive printed circuit board through following low temperature annealing treatment. A lowest electricity resistivity of 5.6 × 10−8 Ω m is obtained which is only 3.5× higher than that of bulk silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.Y. Wang, Y. Chang, Y.X. Wang, Q. Zhang, Z.G. Yang, Green water-based silver nanoplate conductive ink for flexible printed circuit. Mater. Technol. 31(1), 32–37 (2016)

    Article  Google Scholar 

  2. Y.L. Tai, Y.X. Wang, Z.G. Yang, Z.Q. Chai, Green approach to prepare silver nanoink with potentially high conductivity for printed electronics. Surf. Interface Anal. 43(12), 1480–1485 (2011)

    Article  Google Scholar 

  3. A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10(17), 3515–3535 (2014)

    Article  Google Scholar 

  4. X. Nie, H. Wang, J. Zou, Inkjet printing of silver citrate conductive ink on PET substrate. Appl. Surf. Sci. 261, 554–560 (2012)

    Article  Google Scholar 

  5. P.C. Wang, C.P. Chang, M.J. Youh, Y.M. Liu, C.M. Chu, M.D. Ger, The preparation of pH-sensitive Pd catalyst ink for selective electroless deposition of copper on a flexible PET substrate. J. Taiwan Inst. Chem. Eng. 60, 555–563 (2016)

    Article  Google Scholar 

  6. D.H. Shin, S. Woo, H. Yem, M. Cha, S. Cho, M. Kang, S. Jeong, Y. Kim, K. Kang, Y. Piao, A self-reducible and alcohol-soluble copper-based metal-organic decomposition ink fora printed electronics. ACS Appl. Mater. Interfaces 6(5), 3312–3319 (2014)

    Article  Google Scholar 

  7. A. Ghosale, K. Shrivas, R. Shankar, V. Ganesan, Low cost paper electrode fabricated by direct writing with silver nanoparticles based ink for detection of hydrogen peroxide in waste water. Anal. Chem. 89, 776–782 (2017)

    Article  Google Scholar 

  8. C.N. Chen, C.P. Chen, T.Y. Dong, T.C. Chang, M.C. Chen, H.T. Chen, Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature. Acta Mater. 60(16), 5914–5924 (2012)

    Article  Google Scholar 

  9. R. Dharmadasa, M. Jha, D.A. Amos, T. Druffel, Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013)

    Article  Google Scholar 

  10. W. Li, W. Li, J. Wei, J. Tan, M. Chen, Preparation of conductive Cu patterns by directly writing using nano-Cu ink. Mater. Chem. Phys. 146(1), 82–87 (2014)

    Google Scholar 

  11. A.J. Kell, C. Paquet, O. Mozenson, I.D. Tabrizi, B. Deore, X. Liu, G.P. Lopinski, R. Jame, K. Hettak, J. Shaker, A. Momciu, J. Ferrigno, O. Ferrand, J.X. Hu, S. Lafrenière, P.R.L. Malenfant, Versatile molecular silver ink platform for printed flexible electronics. ACS Appl. Mater. Interfaces 9(20), 17226–17237 (2017)

    Article  Google Scholar 

  12. J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28(28), 5986–5996 (2016)

    Article  Google Scholar 

  13. K. Ankireddy, M. Iskander, S. Vunnam, D.E. Anagnostou, J. Kellar, W. Cross, Thermal analysis of silver nanoparticles for flexible printed antenna fabrication. J. Appl. Phys. 114(12), 124303 (2013)

    Article  Google Scholar 

  14. A. Kamyshny, M.B. Moshe, S. Aviezer, S. Magdassi, Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26(4), 281–288 (2005)

    Article  Google Scholar 

  15. Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, C. Wong, Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl. Mater. Interfaces 6(1), 560–567 (2013)

    Article  Google Scholar 

  16. L. Li, Y. Guo, X. Zhang, Y. Song, Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. J. Mater. Chem. A 2(44), 19095–19101 (2014)

    Article  Google Scholar 

  17. X.F. Tang, Z.G. Yang, W.J. Wang, A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids Surf. A 360(1), 99–104 (2010)

    Article  Google Scholar 

  18. A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Pen-on-paper flexible electronics. Adv. Mater. 23(30), 3426–3430 (2011)

    Article  Google Scholar 

  19. H. Qin, J. Dong, Y.S. Lee, AC-pulse modulated electrohydrodynamic jet printing and electroless copper deposition for conductive microscale patterning on flexible insulating substrates. Robot. Comput. Integr. Manuf. 43, 179–187 (2017)

    Article  Google Scholar 

  20. R.R. Søndergaard, M. Hösel, F.C. Krebs, Roll-to-Roll fabrication of large area functional organic materials. J. Polym. Sci. B 51(1), 16–34 (2013)

    Article  Google Scholar 

  21. B. Feng, X.L. Gu, X.B. Zhao, Y. Zhang, T.Y. Zhang, J.G. Shi, In situ synthesis of silver/chemically reduced graphene nanocomposite and its use for low temperature conductive paste. J. Mater. Sci.: Mater. Electron. 28(11), 7686–7691 (2017)

    Google Scholar 

  22. J. Luo, Z. Cheng, C. Li, L. Wang, C. Yu, Y. Zhao, M. Chen, Q. Li, Y. Yao, Electrically conductive adhesives based on thermoplastic polyurethane filled with silver flakes and carbon nanotubes. Compos. Sci. Technol. 129, 191–197 (2016)

    Article  Google Scholar 

  23. C. Li, Q. Li, L. Cheng, T. Li, H. Lu, L. Tang, K. Zhang, S.E.J. Zhang, Z. Li, Y. Yao, Conductivity enhancement of polymer composites using high-temperature short-time treated silver fillers. Compos. A 100, 64–70 (2017)

    Article  Google Scholar 

  24. C. Li, Q. Li, X. Long, T. Li, J. Zhao, K. Zhang, S.E.J. Zhang, Z. Li, Y. Yao, In situ generation of photosensitive silver halide for improving the conductivity of electrically conductive adhesives. ACS Appl. Mater. Interfaces 9, 29047–29054 (2017)

    Article  Google Scholar 

  25. G. Wu, Y. Cheng, Z. Yang, Z.J.H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    Article  Google Scholar 

  26. G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci.: Mater. Electron. 27(6), 5592–5599 (2016)

    Google Scholar 

  27. G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, In situ synthesis and preparation of TiO2/polyimide composite containing phenolphthalein functional group. J. Mater. Sci.: Mater. Electron. 28, 6544–6551 (2017)

    Google Scholar 

  28. G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J. Mater. Sci.: Mater. Electron. 28, 576–581 (2017)

    Google Scholar 

  29. C. Li, X. Gong, L. Tang, K. Zhang, J. Luo, L. Ling, J. Pu, T. Li, M. Li, Y. Yao, Electrical property enhancement of electrically conductive adhesives through Ag-coated-Cu surface treatment by terephthalaldehyde and iodine. J. Mater. Chem. C 3, 6178 (2015)

    Article  Google Scholar 

  30. D. Deng, Y. Jin, Y. Cheng, T. Qi, F. Xiao, Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Appl. Mater. Interfaces 5(9), 3839–3846 (2013)

    Article  Google Scholar 

  31. F. Wang, H. Zhu, H. He, Low temperature sintering of Ag nanoparticles/graphene composites for paper based writing electronics. J. Phys. D 49(41), 415501 (2016)

    Article  Google Scholar 

  32. K.Y. Shin, J.S. Lee, J.Y. Hong, J. Jang, One-step fabrication of a highly conductive and durable copper paste and its flexible dipole tag-antenna application. Chem. Commun. 50(23), 3093–3096 (2014)

    Article  Google Scholar 

  33. X. Wu, S. Shao, Z. Chen, Z. Cui, Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Nanotechnology 28(3), 035203 (2016)

    Article  Google Scholar 

  34. W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Preparation and conductive mechanism of copper nanoparticles ink. J. Mater. Sci.: Mater. Electron. 24(12), 5175–5182 (2013)

    Google Scholar 

  35. G.M. Durana, T.E. Benavidezb, J.G. Giulianic, A. Riosa, C.D. Garciab, Synthesis of CuNP-modified carbon eloectrodes obtained by pyrolysis of paper. Sens. Actuators B 227, 626–633 (2016)

    Article  Google Scholar 

  36. T. Ramani, K.L. Prasanth, B. Sreedhar, Air stable colloidal copper nanoparticles: synthesis, characterization and their surface-enhanced Raman scattering properties. Physica E 77, 65–71 (2016)

    Article  Google Scholar 

  37. H. Sim, J. Lee, T. Yu, K. Kim, S.J. Lee, J.H. Lee, J.H. Choc, B. Lim, Size-tunable and scalable synthesis of uniform copper nanocrystals. RSC Adv. 5(4), 2756–2761 (2015)

    Article  Google Scholar 

  38. C.J. Wua, S.M. Chen, Y.J. Sheng, H.K. Tsao, Anti-oxidative copper nanoparticles and their conductive assembly sintered at room temperature. J. Taiwan Inst. Chem. Eng. 45(5), 2719–2724 (2014)

    Article  Google Scholar 

  39. Y. Zhang, P. Zhu, L. Chen, G. Li, F. Zhou, D. Lu, R. Sun, F. Zhou, C. Wong, Hierarchical architectures of monodisperse porous Cu microspheres: synthesis, growth mechanism, high-efficiency and recyclable catalytic performance. J. Mater. Chem. A 2(30), 11966–11973 (2014)

    Article  Google Scholar 

  40. Y. Zhang, P. Zhu, G. Li, W. Wang, L. Chen, D. Lu, R. Sun, F. Zhou, C. Wong, Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities. Nanoscale 7(32), 13775–13783 (2015)

    Article  Google Scholar 

  41. J. Wen, J. Li, S. Liu, Q. Chen, Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method. Colloids Surf. A 373(1), 29–35 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (21571186), Guangdong Key Laboratory of High Density Electronic Packaging Key Materials (2014B030301014), Youth Innovation Promotion Association (2017411), Guangdong TeZhi plan youth talent of science and technology (2014TQ01C102), R&D Funds for basic Research Program of Shenzhen (JSGG20160229155249762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengli Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, W., Li, G., Zhu, P. et al. Facile synthesis of low temperature sintering Ag nanopaticles for printed flexible electronics. J Mater Sci: Mater Electron 29, 4432–4440 (2018). https://doi.org/10.1007/s10854-017-8390-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8390-4

Navigation