Skip to main content

Advertisement

Log in

Impact of CTAB on morphology and electrochemical performance of MoS2 nanoflowers with improved lithium storage properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The search for high capacity, low-cost electrode materials for lithium-ion batteries is a significant challenge in energy research. Among the numerous potential candidates, layered compounds such as MoS2 (Molybdenum Disulfide) have attracted increasing attention. A facile hydrothermal reduction process using hexadecyltrimethy ammonium bromide (CTAB) as surfactant was developed for the synthesis of lithium-ion battery anode material MoS2 nanoflowers. The impact of CTAB on morphology and electrochemical performance of MoS2 has been investigated. With the increase of CTAB content, MoS2 ultrathin nanosheets with high specific surface area and more active sites have been successfully synthesized. Electrochemical measurements demonstrated that MoS2 nanoflowers synthesized with 1% content of CTAB have better electrochemical performance than others as anode materials for Li-ion batteries, which yield a high discharge capacity of 1245 mAh g−1 at a current density of 50 mA g−1 and a stable capacity retention of 740 mAh g−1 until 100 electrochemical cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.S. Arico, P. Bruce, B. Scrosati, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)

    Article  Google Scholar 

  2. M. Chhowalla, H.S. Shin, G. Eda, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Article  Google Scholar 

  3. E. Stura, C. Nicolini, New nanomaterials for light weight lithium batteries. Anal. Chim. Acta 568, 57–64 (2006)

    Article  Google Scholar 

  4. J. Wang, C. Zhang, F. Kang, Nitrogen-enriched porous carbon coating for manganese oxide nanostructures toward high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 9185–9194 (2015)

    Article  Google Scholar 

  5. H. Wang, H.B. Feng, J.H. Li, Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 10, 2165–2181 (2014)

    Article  Google Scholar 

  6. X.L. Li, Y.D. Li, MoS2 nanostructures: synthesis and electrochemical Mg2+ intercalation. J. Phys. Chem. B 108, 13893–13900 (2004)

    Article  Google Scholar 

  7. C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, H. Liu, Synthesis of molybdenum disulfide for lithium ions battery applications. Mater. Res. Bull. 44, 1811–1815 (2009)

    Article  Google Scholar 

  8. H. H.wang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11, 4826–4830 (2011)

    Article  Google Scholar 

  9. X.S. Zhou, L.J. Wan, Y.G. Guo, Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage., Chem. Commun. 49, 1838–1840 (2013)

    Article  Google Scholar 

  10. S. Ding, D. Zhang, J.S. Chen, X.W. Lou, Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheetsand their lithium torage properties., Nanoscale. 4, 95–98 (2012)

    Article  Google Scholar 

  11. H. Li, W.J. Li, L. Ma, W.X. Chen, J.M. Wang, Electrochemical lithiation/delithiation performances of 3D flower-like MoS2 powders prepared by ionic liquid assisted hydrothermal route. J. Alloys Compd. 471, 442 – 447 (2009)

    Article  Google Scholar 

  12. W. Liu, S. He, T. Yang, Y. Feng, G. Qian, J. Xu, TEOS-assisted synthesis of porous MoS2 with ultra-small exfoliated sheets and applications in dye-sensitized solar cells. Appl. Surf. Sci. 313, 498–503 (2014)

    Article  Google Scholar 

  13. P. Afanasiev, G.F. Xia, G. Berhault, B. Jouguet, M. Lacroix, Surfactant-assisted synthesis of highly dispersed molybdenum sulfide. Chem. Mater. 11, 3216–3219 (1999)

    Article  Google Scholar 

  14. N. Berntsen, T. Gutjahr, L. Loeffler, J.R. Gomm, R. Seshadriand, W. Tremel, A solvothermal route to high-surface-area nanostructured MoS2. Chem. Mater. 15, 4498–4502 (2003)

    Article  Google Scholar 

  15. S. Liang, J. Zhou, J. Liu, A. Pan, Y. Tang, PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties. CrystEngComm 15, 4998–5002 (2013)

    Article  Google Scholar 

  16. P. Sun, W. Zhang, X. Hu, L. Yuan, Y. Huang, Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2, 3498–3504 (2014)

    Article  Google Scholar 

  17. S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. J. Mater. Chem. A 2, 7862–7872 (2014)

    Article  Google Scholar 

  18. K. Zhang, H.J. Kim, X.J. Shi, J.T. Lee, J.M. Choi, M.S. Song, J.H. Park, Graphene/acid coassisted synthesis of ultrathin MoS2 nanosheets with outstanding rate capability for a lithium battery anode., Inorg. Chem. 52, 9807–9812 (2013)

    Article  Google Scholar 

  19. P. Sun, W.X. Zhang, X.L. Hu, L.X. Yuan, ,Y.H. Huang, Synthesis ofhierarchical MoS2and its electrochemical performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2, 3498–3504 (2014)

    Article  Google Scholar 

  20. D. Xie, D.H. Wang, W.J. Tang, Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage. J. Power Sources 307, 510–518 (2016)

    Article  Google Scholar 

  21. J.W. Zhou, J. Qin, X. Zhang, C.S. Shi, E.Z. Liu, J.J. Li, C.N. He, 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9, 3837–3848 (2015)

    Article  Google Scholar 

  22. C. Zhu, X. Mu, P.A. van Aken, Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 4, 5 (2015)

    Google Scholar 

  23. X.D. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014)

    Article  Google Scholar 

  24. J. Wang, J.L. Liu, D.L. Chao, J.X. Yan, J.Y. Lin, Z.X. Shen, Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage[J]. Adv. Mater. 26, 7162–7169 (2014)

    Article  Google Scholar 

  25. U.K. Sen, S. Mitra, High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder[J]. ACS Appl. Mater. Interfaces 5, 1240–1247 (2013)

    Article  Google Scholar 

  26. J. He, Y. Chen, P. Li, Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries[J]. Electrochim. Acta 182, 424–429 (2015)

    Article  Google Scholar 

  27. X.F. Qian, Y.R. Wang, W. Zhou, L.P. Zhang, G.S. Song, S.Q. Cheng, Interlayer distance dependency of lithium storage in MoS2 as anode material for lithium-ion batteries. Int. J. Electrochem. Sci. 10, 3510–3517 (2015)

    Google Scholar 

  28. C.P. Veeramalai, F.S. Li, H.Y. Xu, T.W. Kim, T.L. Guo, One pot hydrothermal synthesis of graphene like MoS2 nanosheets for application in high performance lithium ion batteries. RSC Adv. 5, 57666–57670 (2015)

    Article  Google Scholar 

  29. J. Shao, Q.T. Qu, Z.M. Wan, T. Gao, Z.C. Zuo, H.H. Zheng, From dispersed microspheres to interconnected nanospheres: carbon-sandwiched monolayered MoS2 as high-performance anode of li-ion batteries. ACS Appl. Mater. Interfaces 7, 22927–22934 (2015)

    Article  Google Scholar 

  30. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of Molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7, 209–231 (2014)

    Article  Google Scholar 

  31. Z.C. Wu, B. Li, Y.J. Xue, J.J. Li, Y.L. Zhang, F. Gao, Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. J. Mater. Chem. A 3, 19445–19454 (2015)

    Article  Google Scholar 

  32. N. Plylahan, C. Vidal-Abarca, P. Lavela, J.L. Tirado, The influence of iron substitution on the electrochemical properties of Li1+xTi2–xFex(PO4)3/C composites as electrodes for lithium batteries. Electrochim. Acta 22, 21602–21607 (2012)

    Google Scholar 

  33. L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ. Sci. 5, 6966–6972 (2012)

    Article  Google Scholar 

  34. W.J. Zhou, Z.Y. Yin, Y.P. Du, X. Huang, Z.Y. Zeng, Z.X. Fan, H. Liu, J.Y. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9, 140–147 (2013)

    Article  Google Scholar 

  35. H. Jiang, D.Y. Ren, H.F. Wang, Y.J. Hu, S.J. Guo, H.Y. Yuan, P.J. Hu, L. Zhang, C.Z. Li, Batteries: 2D monolayer MoS2-carbon inter over lapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv. Mater. 27, 3687–3695 (2015)

    Article  Google Scholar 

  36. L. Shyyko, V. Kotsyubynsky, I. Budzulyak, M. Rawski, Y. Kulyk, R. Lisovski, Synthesis and double-hierarchical structure of MoS2/C nanospheres. Phys. Status Solidi 212, 2309–2314 (2015)

    Article  Google Scholar 

  37. H. Liu, X.J. Chen, X. Su, C.Y. Duan, K. Guo, Z.F. Zhu, Flower-like MoS2 modified reduced graphene oxide nanocomposite: synthesis and application for lithium-ion batteries and mediator-free biosensor. J. Electrochem. Soc. 1629, 312–318 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Natural Science Foundation of Jilin Province (No. 20170101128JC), the Science and Technology Research Project of the Education Department of Jilin Province during the 13th 5-year plan period (no. 2016-359), the Youth Foundation of Changchun University of Science and Technology (no. XQNJJ-2014-13, XJJLG-2014-10), and the Science and Technology Planning Project of Changchun City (no. 2013064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Cong, L., Wang, J. et al. Impact of CTAB on morphology and electrochemical performance of MoS2 nanoflowers with improved lithium storage properties. J Mater Sci: Mater Electron 29, 3631–3639 (2018). https://doi.org/10.1007/s10854-017-8293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8293-4

Navigation