Bipolar resistive switching with coexistence of mem-elements in the spray deposited CoFe2O4 thin film

  • T. D. Dongale
  • A. A. Bagade
  • S. V. Mohite
  • A. D. Rananavare
  • M. K. Orlowski
  • R. K. Kamat
  • K. Y. Rajpure
Article
  • 40 Downloads

Abstract

In the present investigation, we have experimentally demonstrated the bipolar resistive switching with the coexistence of three fundamental memelements in the Ag/CoFe2O4/FTO thin film metal-insulator-metal (MIM) device. The device shows the analog resistive switching behavior and charge transport follows the Ohmic and space charge limited conduction (SCLC) mechanisms. The device transforms from asymmetric to symmetric resistive switching when the SCLC conduction mechanism change to the Ohmic conduction mechanism at higher voltage sweep rates. It was observed that the I–V crossing location of MIM device shifted towards the higher voltage range with increasing voltage sweep rates for both bias regions due to the nanobattery effect. The significant tunneling gap between immature conductive filament(s) and percolation channels was responsible for the coexistence of memelements and nanobattery effect in the Ag/CoFe2O4/FTO thin film MIM device.

Notes

Acknowledgements

The authors extend their appreciation to the Staff and Students of Physics Instrumentation Facility Centre (PIFC), Shivaji University, Kolhapur for valuable discussion and characterizations.

References

  1. 1.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976)CrossRefGoogle Scholar
  3. 3.
    Y.V. Pershin, M. Di Ventra, Adv. Phys. 60, 145 (2011)CrossRefGoogle Scholar
  4. 4.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)CrossRefGoogle Scholar
  5. 5.
    L.O. Chua, Appl. Phys. A 102, 765 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Di Ventra, Y.V. Pershin, L.O. Chua, Proc. IEEE 97, 1717 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Di Ventra, Y.V. Pershin, Nanotechnology 24, 255201 (2013)CrossRefGoogle Scholar
  8. 8.
    R.E. Meade, G.S. Sandhu, U.S. Patent No. 8,867,261. (U.S. Patent and Trademark Office, Washington, DC, 2014)Google Scholar
  9. 9.
    J. Han, C. Song, S. Gao, Y. Wang, C. Chen, F. Pan, ACS Nano 8, 10043 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Sci. Rep. 4, 4522 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Sarma, B.M. Mothudi, M.S. Dhlamini, J. Mater. Sci. Mater. Electron. 27, 4551 (2016)CrossRefGoogle Scholar
  12. 12.
    T.D. Dongale, K.V. Khot, S.S. Mali, P.S. Patil, P.K. Gaikwad, R.K. Kamat, P.N. Bhosale, Mater. Sci. Semicond. Process 40, 523 (2015)CrossRefGoogle Scholar
  13. 13.
    T.D. Dongale, S.V. Mohite, A.A. Bagade, P.K. Gaikwad, P.S. Patil, R.K. Kamat, K.Y. Rajpure, Electron. Mater. Lett. 11, 944 (2015)CrossRefGoogle Scholar
  14. 14.
    T.D. Dongale, S.S. Shinde, R.K. Kamat, K.Y. Rajpure, J. Alloys Compd. 593, 267 (2014)CrossRefGoogle Scholar
  15. 15.
    T.D. Dongale, K.V. Khot, S.V. Mohite, S.S. Khandagale, S.S. Shinde, V.L. Patil, S.A. Vanalkar, A.V. Moholkar, K.Y. Rajpure, P.N. Bhosale, P.S. Patil, P.K. Gaikwad, R.K. Kamat, J. Nano-Electron. Phys. 8, 04030 (2016)CrossRefGoogle Scholar
  16. 16.
    T.D. Dongale, P.J. Patil, N.K. Desai, P.P. Chougule, S.M. Kumbhar, P.P. Waifalkar, P.B. Patil, R.S. Vhatkar, M.V. Takale, P.K. Gaikwad, R.K. Kamat, Nano Converg. 3, 1 (2016)CrossRefGoogle Scholar
  17. 17.
    T.D. Dongale, N.D. Desai, K.V. Khot, N.B. Mullani, P.S. Pawar, R.S. Tikke, V.B. Patil, P.P. Waifalkar, P.B. Patil, R.K. Kamat, P.S. Patil, P.N. Bhosale, J. Solid State Electr. 21, 2753 (2017)CrossRefGoogle Scholar
  18. 18.
    P.S. Pawar, R.S. Tikke, V.B. Patil, N.B. Mullani, P.P. Waifalkar, K.V. Khot, A.M. Teli, A.D. Sheikh, T.D. Dongale, Mater. Sci. Semicond. Process 71, 102 (2017)CrossRefGoogle Scholar
  19. 19.
    Q. Xia, M.D. Pickett, J.J. Yang, X. Li, W. Wu, G. Medeiros-Ribeiro, R.S. Williams, Adv. Funct. Mater. 21, 2660 (2011)CrossRefGoogle Scholar
  20. 20.
    J.P. Strachan, A. C.Torrezan, G. Medeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 505402 (2011)CrossRefGoogle Scholar
  21. 21.
    W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, J. Am. Chem. Soc. 134, 14658 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Mustaqima, P. Yoo, W. Huang, B. Lee, C. Liu, Nanoscale Res. Lett. 10, 1 (2015)CrossRefGoogle Scholar
  23. 23.
    Z. Xiahou, D.H. Kim, H. Xu, Y. Li, B. Lee, C. Liu, J. Mater. Sci. Mater. Electron. 27, 2255 (2016)CrossRefGoogle Scholar
  24. 24.
    V.S. Sawant, A.A. Bagade, K.Y. Rajpure, Phys. B 474, 47 (2015)CrossRefGoogle Scholar
  25. 25.
    A.A. Bagade, K.Y. Rajpure, J. Alloys Compd. 657, 414 (2016)CrossRefGoogle Scholar
  26. 26.
    F. Liu, Y. Hou, S. Gao, Chem. Soc. Rev. 43, 8098 (2014)CrossRefGoogle Scholar
  27. 27.
    Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004)CrossRefGoogle Scholar
  28. 28.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Kaneko, Y. Nishitani, M. Ueda, IEEE Trans. Electron Dev. 61, 2827 (2014)CrossRefGoogle Scholar
  30. 30.
    T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Mater. Sci. Semicond. Process 38, 228 (2015)CrossRefGoogle Scholar
  31. 31.
    W. Hu, X. Chen, G. Wu, Y. Lin, N. Qin, D. Bao, Appl. Phys. Lett. 101, 063501 (2012)CrossRefGoogle Scholar
  32. 32.
    C. Jiang, L. Wu, W. Wei, C. Dong, J. Yao, Nanoscale Res. Lett. 9, 584 (2014)CrossRefGoogle Scholar
  33. 33.
    I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. Van den Hurk, F. Lentz, R. Waser, Nat. Commun. 4, 1771 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Tappertzhofen, E. Linn, U. Bottger, R. Waser, I. Valov, IEEE Electron Device Lett. 35, 208 (2014)CrossRefGoogle Scholar
  35. 35.
    C. Jin, D. Zheng, P. Li, W. Mi, H. Bai, Appl. Surf. Sci. 263, 678 (2012)CrossRefGoogle Scholar
  36. 36.
    K. Shibuya, R. Dittmann, S. Mi, R. Waser, Adv. Mater. 22, 411 (2010)CrossRefGoogle Scholar
  37. 37.
    R. Muenstermann, T. Menke, R. Dittmann, R. Waser, Adv. Mater. 22, 4819 (2010)CrossRefGoogle Scholar
  38. 38.
    K.P. Biju, X. Liu, S. Kim, S. Jung, J. Park, H. Hwang, Phys. Status Solidi Rapid Res. Lett. 5, 89 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • T. D. Dongale
    • 1
  • A. A. Bagade
    • 2
  • S. V. Mohite
    • 2
  • A. D. Rananavare
    • 1
  • M. K. Orlowski
    • 3
  • R. K. Kamat
    • 4
  • K. Y. Rajpure
    • 2
  1. 1.Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  3. 3.Bradley Department of Electrical and Computer EngineeringVirginia Tech.BlacksburgUSA
  4. 4.Department of ElectronicsShivaji UniversityKolhapurIndia

Personalised recommendations