Skip to main content
Log in

Enhanced magnetic and dielectric properties in bismuth ferrite (Bi2−xSrxFe4O9) derived by the reverse chemical co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2−xSrxFe4O9, 0 ≤ x ≤ 0.25 (BSFO) powders have been successfully synthesized by the reverse chemical co-precipitation method with a pH value of 9 at room temperature. In this study, the effect of Sr2+ doping on the structural, morphological, magnetic and electrical properties of BSFO was investigated and then the as-prepared powders were fabricated by microwave sintering at 800 °C. The X-ray diffraction (XRD) reveals the formation of the pure phase orthorhombic structure with Bi2O3 impurity for samples with x = 0.15, 0.20 and 0.25. Also, XRD patterns showed that by increasing the Sr2+ concentration, the amount of Bi2O3 impurity increases. In addition, the field emission scanning electron microscopy (FESEM) indicates by increasing the Sr content, the particle size decreases from 215 for a pure sample to 40 nm for BSFO with x = 0.25, approximately. The thermogravimetric–differential scanning calorimeter (TG–DSC) and Fourier transform infrared spectroscopy (FT-IR) were carried out for the estimation and conformation of the as-selected calcination temperature, weight loss and vibrational bounding mode, respectively. The magnetic properties of the nanoparticles and dielectric properties of the bulk samples were measured using the vibrating sample magnetometer (VSM) and inductance–capacitance–resistance (LCR-meter), respectively. The magnetization (M) was elevated from 0.190 to 0.358 emu/g by adding the 0.10 and then falls down to 0.217 emu/g for x = 0.20 strontium molar ratio as a result of the spiral spin structure collapse and formation of diamagnetic Bi2O3 phase, respectively. Besides, a decrease in the particles size by increasing the Sr amount resulted in more uncompensated spins, thereby improving the saturation magnetization. Furthermore, The coercivity of as-synthesized powder samples greatly increase with increasing the dopant concentration from 125 Oe for pure BFO to 3289 Oe for samples with x = 0.10 and then decreases to 940 Oe for x = 0.25 due to increasing the non-uniformity in the grain size distribution by addition the more dopant ions. In addition, the dielectric constant and dielectric loss were improved up to x = 0.25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Wu, M. Siegel, Odor-Based Incontinence Sensor, Instrumentation and Measurement Technology Conference, 2000. IEEE, 2000, pp. 63–68

  2. L. Dori, S. Nicoletti, I. Elimi, A.R. Mastrogiacomo, L. Sampaolo, E. Pierini, A gas chromatographic-like system for the separation and monitoring of benzene, toluene and xylene compounds at the ppb level using solid state metal oxide gas sensors. J. Sens. Mater. 12, 163–174 (2000)

    Google Scholar 

  3. A. Poghossian, H. Abovian, P. Avakian, S. Mkrtchian, V. Haroutunian, Bismuth ferrites: new materials for semiconductor gas sensors. J. Sens. Actuators B 4, 545–549 (1991)

    Article  Google Scholar 

  4. W. Göpel, New materials and transducers for chemical sensors. J. Sens. Actuators B 18, 1–21 (1994)

    Article  Google Scholar 

  5. H. Xie, K. Wang, Y. Jiang, Y. Zhao, X. Wang, An improved co-precipitation method to synthesize three bismuth ferrites. J. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 1363–1367 (2014)

    Article  Google Scholar 

  6. P. Hajra, R. Maiti, D. Chakravorty, Room temperature magnetoelectric coupling in single crystal Bi2Fe4O9 nanotubes grown within an anodic aluminum oxide template. Mater. Lett. 81, 138–141 (2012)

    Article  Google Scholar 

  7. A. Tutov, V. Markin, The X-ray structural analysis of the antiferromagnetic Bi2Fe4O9 and the isotypical combinations Bi2Ga4O9 and Bi2Al4O9. Izv. Akad. Nauk SSSR Neorg. Mater. 6 (1970)

  8. E. Zahedi, B. Xiao, M. Shayestefar, First-principles investigations of the structure, electronic, and optical properties of mullite-type orthorhombic Bi2M4O9 (M = Al3+, Ga3+). J. Inorg. Chem. 55, 4824–4835 (2016)

    Article  Google Scholar 

  9. Y. Xiong, M. Wu, Z. Peng, N. Jiang, Q. Chen, Hydrothermal synthesis and characterization of Bi2Fe4O9 nanoparticles. J. Chem. Lett. 33, 502–503 (2004)

    Article  Google Scholar 

  10. D. Astrov, Magnetoelectric effect in chromium oxide. J. Sov. Phys. 13, 729–733 (1961)

    Google Scholar 

  11. I. Dzyaloshinskii, On the magneto-electrical effect in antiferromagnets. J. Sov. Phys. 10, 628–629 (1960)

    Google Scholar 

  12. Z. Yang, Y. Huang, B. Dong, H.-L. Li, S.-Q. Shi, Densely packed single-crystal Bi2Fe4O9 nanowires fabricated from a template-induced sol–gel route. J. Solid State Chem. 179, 3324–3329 (2006)

    Article  Google Scholar 

  13. N. Niizeki, M. Wachi, The crystal structures of Bi2Mn4O10, Bi2Al4O9 and Bi2Fe4O9. J. Cryst. Mater. 127, 173–187 (1968)

    Google Scholar 

  14. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  15. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005)

    Article  Google Scholar 

  16. W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)

    Article  Google Scholar 

  17. A. Singh, S. Kaushik, B. Kumar, P. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Substantial magnetoelectric coupling near room temperature in Bi2Fe4O9. J. Appl. Phys. Lett. 92, 132910 (2008)

    Article  Google Scholar 

  18. P.K. Rao, S. Krishnan, M. Pattabi, G. Sanjeev, Magnetic and photoluminescence studies of electron irradiated Bi2Fe4O9 nanoparticles. J. Magn. Magn. Mater. 401, 77–80 (2016)

    Article  Google Scholar 

  19. H. Ke, W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu, Y. Zhou, Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation. J. Alloy. Compd. 509, 2192–2197 (2011)

    Article  Google Scholar 

  20. L. Wang, J. Li, J.-B. Xu, A.-M. Chang, L. Bian, B. Gao, K.-T. Liu, Bi2Fe4O9 submicron-rods synthesized by a low-heating temperature solid state precursor method. J. Alloy. Compd. 562, 64–68 (2013)

    Article  Google Scholar 

  21. A. Maitre, M. Francois, J. Gachon, Experimental study of the Bi2O3-Fe2O3 pseudo-binary system. J. Phase Equilib. Diffus. 25, 59–67 (2004)

    Article  Google Scholar 

  22. M. Basiri, H. Shokrollahi, G. Isapour, Effects of La content on the magnetic, electric and structural properties of BiFeO3. J. Magn. Magn. Mater. 354, 184–189 (2014)

    Article  Google Scholar 

  23. H. Shokrollahi, Magnetic, electrical and structural characterization of BiFeO3nanoparticles synthesized by co-precipitation. J. Powder Technol. 235, 953–958 (2013)

    Article  Google Scholar 

  24. I.A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, L. Bellaiche, Finite-temperature properties of multiferroic BiFeO3. J. Phys. Rev. Lett. 99, 227602 (2007)

    Article  Google Scholar 

  25. Y. Liu, R. Zuo, Morphology and optical absorption of Bi2Fe4O9 crystals via mineralizer-assisted hydrothermal synthesis. J. Particuology 11, 581–587 (2013)

    Article  Google Scholar 

  26. T. Liu, Y. Xu, C. Zeng, Synthesis of Bi2Fe4O9 via PVA sol–gel route. Mater. Sci. Eng. B 176, 535–539 (2011)

    Article  Google Scholar 

  27. B. Kaur, L. Singh, V.A. Reddy, D.-Y. Jeong, N. Dabra, J.S. Hundal, Study of A-site divalent doping on multiferroic properties of BFO nanoparticles processed via combustion method. J. Struct. 25, 28 (2016)

  28. Y. Qiu, Z. Zou, R. Sang, H. Wang, D. Xue, Z. Tian, G. Gong, S. Yuan, Enhanced magnetic and ferroelectric properties in Cr doped Bi2Fe4O9 ceramics. J. Mater. Sci.: Mater. Electron. 26, 1732–1736 (2015)

    Google Scholar 

  29. T. Hussain, S.A. Siddiqi, S. Atiq, M. Awan, Induced modifications in the properties of Sr doped BiFeO3 multiferroics. Prog. Nat. Sci.: Mater. Int. 23, 487–492 (2013)

    Article  Google Scholar 

  30. Q.-J. Ruan, W.-D. Zhang, Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J. Phys. Chem. C 113, 4168–4173 (2009)

    Article  Google Scholar 

  31. J.T. Han, Y.H. Huang, X.J. Wu, C.L. Wu, W. Wei, B. Peng, W. Huang, J.B. Goodenough, Tunable synthesis of bismuth ferrites with various morphologies. Adv. Mater. 18, 2145–2148 (2006)

    Article  Google Scholar 

  32. J. Wang, Y. Wei, J. Zhang, L. Ji, Y. Huang, Z. Chen, Synthesis of pure-phase BiFeO3 nanopowder by nitric acid-assisted gel. J. Mater. Lett. 124, 242–244 (2014)

    Article  Google Scholar 

  33. G. Biasotto, A.Z. Simões, C.R. Foschini, S.G. Antônio, M.A. Zaghete, J.A. Varela, A novel synthesis of perovskite bismuth ferrite nanoparticles. J. Process. Appl. Ceram. 5, 171–179 (2011)

    Article  Google Scholar 

  34. J. Zhao, T. Liu, Y. Xu, Y. He, W. Chen, Synthesis and characterization of Bi2Fe4O9 powders. Mater. Chem. Phys. 128, 388–391 (2011)

    Article  Google Scholar 

  35. A. Beran, D. Voll, H. Schneider, Dehydration and structural development of mullite precursors: an FTIR spectroscopic study. J. Eur. Ceram. Soc. 21, 2479–2485 (2001)

    Article  Google Scholar 

  36. Z. Tian, Y. Qiu, S. Yuan, M. Wu, S. Huo, H. Duan, Enhanced multiferroic properties in Ti-doped Bi2Fe4O9 ceramics. J. Appl. Phys. 108, 064110 (2010)

    Article  Google Scholar 

  37. R. Maiti, S. Basu, D. Chakravorty, Synthesis of nanocrystalline YFeO3 and its magnetic properties. J. Magn. Magn. Mater. 321, 3274–3277 (2009)

    Article  Google Scholar 

  38. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. J. Phys. Rev. B 67, 180401 (2003)

    Article  Google Scholar 

  39. J.-T. Han, Y.-H. Huang, R.-J. Jia, G.-C. Shan, R.-Q. Guo, W. Huang, Synthesis and magnetic property of submicron Bi2Fe4O9. J. Cryst. Growth 294, 469–473 (2006)

    Article  Google Scholar 

  40. T. Hussain, S.A. Siddiqi, S. Atiq, S. Riaz, S. Naseem, Induced Modifications in the Structural, Electrical and Magnetic Properties of Sr-Doped BiFeO 3 Multiferroics. Advances in civil, environmental, and materials research, 2012

  41. G. Wang, S. Nie, J. Sun, S. Wang, Q. Deng, Effects of Zr4+ doping on structure, magnetic and optical properties of Bi2Fe4O9 powders. J. Mater. Sci.: Mater. Electron. 27, 9417–9422 (2016)

    Google Scholar 

  42. F.J.G. Landgraf, J.R.F. Da Silveira, D. Rodrigues-Jr, Determining the effect of grain size and maximum induction upon coercive field of electrical steels. J. Magn. Magn. Mater. 323, 2335–2339 (2011)

    Article  Google Scholar 

  43. M. Ahmed, E. Dhahri, S. El-Dek, M. Ayoub, Size confinement and magnetization improvement by La3+ doping in BiFeO3 quantum dots. Solid State Sci. 20, 23–28 (2013)

    Article  Google Scholar 

  44. B. Bhushan, A. Basumallick, N. Vasanthacharya, S. Kumar, D. Das, Sr induced modification of structural, optical and magnetic properties in Bi1– xSrxFeO3 (x = 0, 0.01, 0.03, 0.05 and 0.07) multiferroic nanoparticles. J. Solid State Sci. 12, 1063–1069 (2010)

    Article  Google Scholar 

  45. G. Song, H. Zhang, T. Wang, H. Yang, F. Chang, Effect of Sm, Co codoping on the dielectric and magnetoelectric properties of BiFeO3 polycrystalline ceramics. J. Magn. Magn. Mater. 324, 2121–2126 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Shiraz University of Technology for the partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shokrollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshmand, N., Shokrollahi, H. & Lavasani, S.A.N.H. Enhanced magnetic and dielectric properties in bismuth ferrite (Bi2−xSrxFe4O9) derived by the reverse chemical co-precipitation method. J Mater Sci: Mater Electron 29, 3201–3209 (2018). https://doi.org/10.1007/s10854-017-8255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8255-x

Navigation