Skip to main content

Advertisement

Log in

High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Many technologies benefit from the advantages induced to graphene oxide through its loading with nano-structured species. Among these areas are the rapidly growing areas of catalysis, as well as sensing and energy storage devices. The focus of this work is on the synthesis of Eu2O3 nanoparticles (EuNs) by means of a facile sonochemical procedure and anchoring them onto the surface of reduced graphene oxide (RGO), through self-assembly thereof. Further, the supercapacitive characteristics of the products were evaluated through testing electrodes made of the prepared materials. The studies were conducted through cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy and the results proved that EuNs decorated RGO (EuN–RGO) have a specific capacitance (SC) of 313 F g−1 in a 3.0 M KCl electrolyte, at 2 mV s−1; and also 268 F g−1 under a current density of 2 Ag−1 based on the galvanostatic charge–discharge evaluations. The properties offered by the EuN–RGO samples could be the result of the synergy between the considerable charge mobility of the inorganic ingredient and the flexibility of the RGO sheets. The EuN–RGO further showed a high cycling durability of 96.5% of the original SC value after 4000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Lee, Y. Cheng, C.V. Varanasi, J Liu, J. Phys. Chem. C 118, 2281 (2014)

    Article  Google Scholar 

  2. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 1, 107 (2012)

    Article  Google Scholar 

  3. H. Gholipour-Ranjbar, M. Soleimani, H.R. Naderi, New J. Chem. 40, 9187 (2016)

    Article  Google Scholar 

  4. SMBM Hosseini, S.M. Baizaee, H.R. Naderi, A.D. Kordi, Appl. Surf. Sci. 427, 507 (2018)

    Article  Google Scholar 

  5. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)

    Article  Google Scholar 

  6. G. Wang, L. Zhang, J. Zhang, Chem Soc Rev 41, 797 (2012)

    Article  Google Scholar 

  7. N.P. Stadie, S. Wang, K.V. Kravchyk, M.V. Kovalenko, (2017) ACS Nano 11 : 1911

  8. X. Zhang, W.L. Song, Z. Liu, H.S. Chen, T. Li, Y. Wei, D.N. Fang, J. Mater. Chem. A 5, 12793 (2017)

    Article  Google Scholar 

  9. S.P. Yu, Q.B. Liu, W.S. Yang, K.F. Han, Z.M. Wang, H. Zhu, Electrochim. Acta 94, 245 (2013)

    Article  Google Scholar 

  10. H. Teymourian, A. Salimi, S. Khezrian, Biosens Bioelectron 49, 1 (2013)

    Article  Google Scholar 

  11. Z. Ji, X. Shen, M. Li, H. Zhou, G. Zhu, K. Chen, Nanotechnology 24, 115603 (2013)

    Article  Google Scholar 

  12. H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, P. Norouzi, RSC Adv. 6, 51211 (2016)

    Article  Google Scholar 

  13. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, RSC Adv. 5, 46050 (2015)

    Article  Google Scholar 

  14. L. Yang, X. Zhang, Y. Li, F. Hao, H. Chen, D. Fang, M. Yang, Electrochim. Acta 155, 272 (2015)

    Article  Google Scholar 

  15. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Appl. Surf. Sci. 402, 245 (2017)

    Article  Google Scholar 

  16. A.S. Dezfuli, M.R. Ganjali, H. Jafari, F. Faridbod, J. Mater. Sci 28, 6176–6185 (2017)

    Google Scholar 

  17. Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, ACS Nano 26, 5310 (2015)

    Article  Google Scholar 

  18. W. He, J. Lin, B. Wang, S. Tuo, S.T. Pantelides, J.H. Dickerson, Phys. Chem. Chem. Phys. 14, 4548 (2012)

    Article  Google Scholar 

  19. S.M.B.M. Hosseini, S.M. Baizaee, H.R. Naderi, A.D. Kordi, Appl. Surf. Sci. 427, 507 (2018)

  20. A.S. Dezfuli, M.R. Ganjali, P. Norouzi, F. Faridbod, J. Mater. Chem. B 3, 2362 (2015)

    Article  Google Scholar 

  21. G. Adachi, N. Imanaka, Z.C. Kang, (2004) Binary Rare Earth Oxides. Springer, Berlin

    Google Scholar 

  22. M.P. Rosynek, Catalysis Reviews 16: 111 (1977)

    Article  Google Scholar 

  23. J.-H. Jhang, A. Schaefer, W. Cartas, S. Epuri, M. Bäumer, J.F. Weaver, J. Phys. Chem. C 117, 21396 (2013)

    Article  Google Scholar 

  24. S. Tsujimoto, T. Masui, N. Imanaka, Eur. J. Inorg. Chem. 2015, 1524 (2015)

    Article  Google Scholar 

  25. E. Antolini, J. Perez, Int. J. Hydrog. Energy 36, 15752 (2011)

    Article  Google Scholar 

  26. D.A. Johnson, J. Chem. Educ. 57: 475 (1980)

    Article  Google Scholar 

  27. D.A. Atwood (2012) The Rare Earth Elements: Fundamentals and Applications. Wiley, Chichester

    Google Scholar 

  28. P. Norouzi, B. Larijani, M. Ezoddin, M.R. Ganjali, Mater. Sci. Eng. C 28, 87 (2008)

    Article  Google Scholar 

  29. P. Norouzi, T.M. Garakani, M.R. Ganjali, Electrochim. Acta 77, 97 (2012)

    Article  Google Scholar 

  30. Z. Mo, Y. Zhao, R. Guo, P. Liu, T. Xie, Mater. Manuf. Processes 27, 494 (2011)

    Article  Google Scholar 

  31. E.-J. Cho, S.-J. Oh, Phys. Rev. B 59, R15613 (1999)

    Article  Google Scholar 

  32. W.-D. Schneider, C. Laubschat, I. Nowik, G. Kaindl, Phys. Rev. B 24, 5422 (1981)

    Article  Google Scholar 

  33. S. Kumar, R. Prakash, R. Choudhary, D. Phase, Mater. Res. Bull. 70, 392 (2015)

    Article  Google Scholar 

  34. H. Gholipour-Ranjbar, M.R. Ganjali, P. Norouzi, H.R. Naderi, J. Mater. Sci.: Mater. Electron. 27, 10163 (2016)

  35. H. Gholipour-Ranjbar, M.R. Ganjali, P. Norouzi, H.R. Naderi, Electrochem. Solid State Lett. 8, A373 (2016)

    Google Scholar 

  36. H.R. Naderi, P. Norouzi, M.R. Ganjali, Mater. Chem. Phys. 163, 38 (2015)

    Article  Google Scholar 

  37. R.S. Kalubarme, Y.H. Kim, C.J. Park, Nanotechnology 24, 365401 (2013)

    Article  Google Scholar 

  38. B.E. Conway (1999) Electrochemical Supercapacitors. Springer, New York

    Book  Google Scholar 

  39. H.R. Naderi, P. Norouzi, M.R. Ganjali, H. Gholipour-Ranjbar, J. Mater. Sci.: Mater. Electron. 28, 60 (2017)

    Google Scholar 

  40. Y. Honarpazhouh, F.R. Astaraei, H.R. Naderi, O. Tavakoli, Int. J. Hydrog. Energy 41, 12175 (2016)

    Article  Google Scholar 

  41. H. Gholipour-Ranjbar, M.R. Ganjali, P. Norouzi, H.R. Naderi, Mater. Res. Express 3, 075501 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of this work by Iran National Science Foundation (INSF) and University of Tehran is gratefully acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ganjali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, H.R., Ganjali, M.R. & Dezfuli, A.S. High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J Mater Sci: Mater Electron 29, 3035–3044 (2018). https://doi.org/10.1007/s10854-017-8234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8234-2

Navigation