Skip to main content

Polyaniline/reduced graphene oxide hydrogel film with attached graphite current collector for flexible supercapacitors

Abstract

Reduced graphene oxide (RGO) hydrogel films possess a low specific capacitance and have no flexible current collectors, which limit their use in flexible supercapacitors. To solve these problems, a novel polyaniline (PANI) modified RGO hydrogel film with an attached graphite current collector (PANI/RGO/G) was prepared. Based on this film, a flexible supercapacitor device was fabricated and characterized. PANI/RGO/G film demonstrates good flexibility and electron transport. The graphite current collector highly reduces the internal resistance of the device. It shows a high specific capacitance of 478 F g−1 at a current density of 2 mA cm−2 based on the mass of one electrode and a good cycling stability (86.5% retention after 5000 cycles). Moreover, during the fabrication of the device, a modified design was adopted to solve the problem of low extension of PANI/RGO/G hydrogel film. The obtained device also exhibits a good flexibility; its capacitance hardly changes after 500 cycles of bending at an angle of 90°.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    H. Nishide, K. Oyaizu, Toward flexible batteries. Science 319, 737–738 (2008)

    Article  Google Scholar 

  2. 2.

    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater 7, 845–854 (2008)

    Article  Google Scholar 

  3. 3.

    W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C 120, 4153–4172 (2016)

    Article  Google Scholar 

  4. 4.

    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)

    Google Scholar 

  5. 5.

    Y. Shao, H. Wang, Q. Zhang, Y. Li, High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J. Mater. Chem. C 1(6), 1245–1251 (2013)

    Article  Google Scholar 

  6. 6.

    X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater 24, 5979–6004 (2012)

    Article  Google Scholar 

  7. 7.

    F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. Mater. Electron 26(7), 4347–4379 (2015)

    Article  Google Scholar 

  8. 8.

    O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010)

    Article  Google Scholar 

  9. 9.

    M. Wang, L.D. Duong, N.T. Mai, S. Kim, Y. Kim, H. Seo, Y.C. Kim, W. Jang, Y. Lee, J. Suhr, J.D. Nam, Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl. Mater. Interfaces 7, 1348–1354 (2015)

    Article  Google Scholar 

  10. 10.

    F. Gunes, H.J. Shin, C. Biswas, G.H. Han, E.S. Kim, S.J. Chae, J.Y. Choi, Y.H. Lee, Layer-by-layer doping of few-layer graphene film. ACS Nano 4, 4595–4600 (2010)

    Article  Google Scholar 

  11. 11.

    D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol 3, 101–105 (2008)

    Article  Google Scholar 

  12. 12.

    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  Google Scholar 

  13. 13.

    G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 8, 452–459 (2012)

    Article  Google Scholar 

  14. 14.

    Z. Lei, N. Christov, X.S. Zhao, Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ. Sci 4, 1866–1873 (2011)

    Article  Google Scholar 

  15. 15.

    B.G. Choi, J. Hong, W.H. Hong, P.T. Hammond, H. Park, Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5, 7205–7213 (2011)

    Article  Google Scholar 

  16. 16.

    H. Fei, C. Yang, H. Bao, G. Wang, Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes. J. Power Sources 266, 488–495 (2014)

    Article  Google Scholar 

  17. 17.

    Y. Shao, M.F. El-Kady, C.-W. Lin, G. Zhu, K.L. Marsh, J.Y. Hwang, Q. Zhang, Y. Li, H. Wang, R. B. Kaner, 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater 28(31), 6719–6726 (2016)

    Article  Google Scholar 

  18. 18.

    X. Yang, J. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater 23, 2833–2838 (2011)

    Article  Google Scholar 

  19. 19.

    Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7, 4042–4049 (2013)

    Article  Google Scholar 

  20. 20.

    U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee, S.O. Kim, Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater 26, 615–619 (2014)

    Article  Google Scholar 

  21. 21.

    X. Feng, W. Chen, L. Yan, Reduced graphene oxide hydrogel film with a continuous ion transport network for supercapacitors. Nanoscale 7, 3712–3718 (2015)

    Article  Google Scholar 

  22. 22.

    S. Roldán, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J. Phys. Chem. C 115(35), 17606–17611 (2011)

    Article  Google Scholar 

  23. 23.

    Y. Wang, X. Yang, L. Qiu, D. Li, Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ. Sci 6, 477–481 (2013)

    Article  Google Scholar 

  24. 24.

    L. Benhaddad, J. Gamby, L. Makhloufi, A. Pailleret, F. Pillier, H. Takenouti, Improvement of capacitive performances of symmetric carbon/carbon supercapacitors by addition of nanostructured polypyrrole powder. J. Power Sources 307, 297–307 (2016)

    Article  Google Scholar 

  25. 25.

    J. Ge, H.B. Yao, W. Hu, X.F. Yu, Y.X. Yan, L.B. Mao, H.H. Li, S.S. Li, S.H. Yu, Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy 2, 505–513 (2013)

    Article  Google Scholar 

  26. 26.

    M. Moussa, M.F. El-Kady, Z. Zhao, P. Majewski, J. Ma, Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology 27(44), 442001 (2016)

    Article  Google Scholar 

  27. 27.

    N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6, 1715–1723 (2012)

    Article  Google Scholar 

  28. 28.

    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2, 2164–2170 (2010)

    Article  Google Scholar 

  29. 29.

    J. Luo, Q. Ma, H. Gu, Y. Zheng, X. Liu, Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor. Electrochim. Acta 173, 184–192 (2015)

    Article  Google Scholar 

  30. 30.

    D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745–1752 (2009)

    Article  Google Scholar 

  31. 31.

    H.P. Cong, X.C. Ren, P.W.S.H. Yu, Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci 6, 1185–1191 (2013)

    Article  Google Scholar 

  32. 32.

    D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl. Mater. Interfaces 6, 200–209 (2014)

    Article  Google Scholar 

  33. 33.

    Y. Meng, K. Wang, Y. Zhang, Z. Wei, Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater 25, 6985–6990 (2013)

    Article  Google Scholar 

  34. 34.

    P. Yu, X. Zhao, Z. Huang, Y. Lia, Q. Zhang, Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J. Mater. Chem. A 2, 14413–14420 (2014)

    Article  Google Scholar 

  35. 35.

    F. Yang, M. Xua, S.J. Bao, H. Wei, H. Chai, Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage. Electrochim. Acta 137, 381–387 (2014)

    Article  Google Scholar 

  36. 36.

    P. Du, H.C. Liu, Chao Yi, K. Wang, X. Gong, Polyaniline-modified oriented graphene hydrogel film as the free-standing electrode for flexible solid-state supercapacitors. ACS Appl. Mater. Interfaces 7, 23932–23940 (2015)

    Article  Google Scholar 

  37. 37.

    N. Hu, L. Zhang, C. Yang, J. Zhao, Z. Yang, H. Wei, H. Liao, Z. Feng, A. Fisher, Y. Zhang, Z.J. Xu, Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Sci. Rep 6, 19777 (2016)

    Article  Google Scholar 

  38. 38.

    J. Luo, W. Zhong, Y. Zou, C. Xiong, W. Yang, Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J. Power Sources 319, 73–81 (2016)

    Article  Google Scholar 

  39. 39.

    L. Dai, Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res 46, 31–42 (2012)

    Article  Google Scholar 

  40. 40.

    S. Eigler, C. Dotzer, A. Hirsch, M. Enzelberger, P. Muller, Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater 24, 1276–1282 (2012)

    Article  Google Scholar 

  41. 41.

    S. Pei, H. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  Google Scholar 

  42. 42.

    P. Ratajczak, K. Jurewicz, P. Skowron, Q. Abbas, F. Beguin, Effect of accelerated ageing on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous electrolyte. Electrochim. Acta 130, 344–350 (2014)

    Article  Google Scholar 

  43. 43.

    H. Habazaki, T. Kimura, Y. Aoki, E. Tsuji, T. Yano, K. Shimizu, A.W. Hassele, Characterization of corrosion-resistant, nanometer-thick, layer-by-layer aluminosilicate coatings prepared on stainless steel. Electrochim. Acta 201, 311–319 (2016)

    Article  Google Scholar 

  44. 44.

    S. Byun, J. Yu, Direct formation of a current collector layer on a partially reduced graphite oxide film using sputter-assisted metal deposition to fabricate high-power micro-supercapacitor electrodes. J. Power Sources 307, 849–855 (2016)

    Article  Google Scholar 

  45. 45.

    J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, Metallic fabrics as the current collector for high-performance graphene-based flexible solid-state supercapacitor. ACS Appl. Mater. Interfaces 8, 4724–4729 (2016)

    Article  Google Scholar 

  46. 46.

    Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater 25, 4035–4042 (2013)

    Article  Google Scholar 

  47. 47.

    Z. Zeng, X. Long, H. Zhou, E. Guo, X. Wang, Z. Hu, On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochim. Acta 163, 107–115 (2015)

    Article  Google Scholar 

  48. 48.

    H. Cheng, Z. Dong, C. Hu, Y. Zhao, Y. Hu, L. Qu, N. Chen, L. Dai, Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5, 3428–3434 (2013)

    Article  Google Scholar 

  49. 49.

    T. Jiang, R. Huang, Y. Zhu, Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater 24, 396–402 (2014)

    Article  Google Scholar 

  50. 50.

    Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai, J. Chen, J. Yan, Z. Wang, K. Cen, X. Feng, Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv. Mater 25, 5799–5806 (2013)

    Article  Google Scholar 

  51. 51.

    Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev 44, 3639–3665 (2015)

    Article  Google Scholar 

  52. 52.

    J. Yeo, G. Kim, S. Hong, M.S. Kim, D. Kim, J. Lee, H.B. Lee, J. Kwon, Y.D. Suh, H.W. Kang, H.J. Sung, J.H. Choi, W.H. Hong, J.M. Ko, S.H. Lee, S.H. Choa, S.H. Ko, Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application. J. Power Sources 246, 562–568 (2014)

    Article  Google Scholar 

  53. 53.

    S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, C. Dotzer, M. Rockert, J. Xiao, C. Papp, O. Lytken, H.P. Steinruck, P. Muller, A. Hirsch, Wet chemical synthesis of graphene. Adv. Mater 25, 3583–3587 (2013)

    Article  Google Scholar 

  54. 54.

    X. Wang, H. Bai, G. Shi, Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J. Am. Chem. Soc. 133, 6338–6342 (2011)

    Article  Google Scholar 

  55. 55.

    Y.R. Nian, H.S. Teng, Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. J. Electrochem. Soc 149, 1008–1014 (2002)

    Article  Google Scholar 

  56. 56.

    J.M. Sieben, A. Anson-Casaos, F. Montilla, M.T. Martínez, E. Morallón, Electrochemical behaviour of different redox probes on single wall carbon nanotube buckypaper-modified electrodes. Electrochim. Acta 135, 404–411 (2014)

    Article  Google Scholar 

  57. 57.

    Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater 18, 2619–2623 (2006)

    Article  Google Scholar 

  58. 58.

    L. Wen, F. Li, H.-M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater 28(22), 4306–4337 (2016)

    Article  Google Scholar 

  59. 59.

    X. Peng, L. Peng, C. Wu, Y. Xie, Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev 43(10), 3303–3323 (2014)

    Article  Google Scholar 

  60. 60.

    M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12(9), 4810–4816 (2012)

    Article  Google Scholar 

  61. 61.

    Z. Suo, E.Y. Ma, H. Gleskova, S. Wagner, Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 74, 1177 (1999)

    Article  Google Scholar 

  62. 62.

    C. Portet, P.L. Taberna, P. Simon, E. Flahaut, C. Laberty-Robert, High power density electrodes for Carbon supercapacitor applications. Electrochim. Acta 50, 4174–4181 (2005)

    Article  Google Scholar 

  63. 63.

    M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T. Lech, R.B. Kaner, Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 112, 4233–4238 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by the Ministry of Education, Youth, and Sports of the Czech Republic (Project No. LTACH17015), NPU Program I (LO1504) and Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of the Czech Republic, within the framework of the CPS—strengthening research capacity (Reg. Number: CZ.1.05/2.1.00/19.0409). First author is thankful for Internal Grant Agency (IGA/CPS/2015/008 and IGA/CPS/2016/003) for the financial support received from Tomas Bata University in Zlin, Czech Republic. Authors are also thankful for the partial support of Shanghai Municipality Research Project (15520720500).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haojie Fei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fei, H., Saha, N., Kazantseva, N. et al. Polyaniline/reduced graphene oxide hydrogel film with attached graphite current collector for flexible supercapacitors. J Mater Sci: Mater Electron 29, 3025–3034 (2018). https://doi.org/10.1007/s10854-017-8233-3

Download citation