Skip to main content
Log in

Microstructure evolution during reflow and thermal aging in a Ag@Sn TLP bondline for high-temperature power devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigated the microstructure evolution and the resulting change in mechanical properties in a Ag@Sn TLP bondline during reflow and thermal aging. A Ag@Sn high-remelting-point bondline was rapidly achieved with thermocompression bonding of Ag@Sn powder in only 5 min at 250 °C. After reducing the thickness of the Sn coating on the Ag particles, the main phases in the resulting bondlines changed from Ag/Ag3Sn to Ag/ζ-Ag, increasing the remelting temperatures to 480 °C and above. The voids were effectively controlled by reducing the thickness of the Sn coating, thereby increasing the shear strength by 38%. The large surface area of the Ag/Sn interface, provided by a high density of core–shell Ag@Sn particles, enabled the rapid formation of an interconnection that is entirely composed of Ag and ζ-Ag. After thermal aging, the main phases transformed from Ag/ζ-Ag to Ag/Ag (Sn) solid solution/ζ-Ag, which causes an increase in the remelting temperature of aged interconnections up to 724 °C. The thermal aged samples showed slight decreases in shear strength, but the morphology of the fracture surfaces indicated better ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Biela, M. Schweizer, S. Waffler, J.W. Kolar, SiC versus Si: evaluation of potentials for performance improvement of inverter and DC–DC converter systems by SiC power semiconductors. Mater. Sci. Forum. 58(7), 2872–2882 (2011)

    Google Scholar 

  2. W. Zhou, X. Zhong, K. Sheng, High temperature stability and the performance degradation of SiC MOSFETs. IEEE Trans. Power Electron. 29(5), 2329–2337 (2014)

    Article  Google Scholar 

  3. R. Wang, D. Boroyevich, P. Ning, Z. Wang, F. Wang, P. Mattavelli, K.D.T. Ngo, K. Rajashekara, A high-temperature SiC three-phase AC–DC converter design for > 100 °C ambient temperature. IEEE Trans. Power Electron. 28(1), 555–572 (2013)

    Article  Google Scholar 

  4. E.P. Wood, K.L. Nimmo, In search of new lead-free electronic solders. J. Electron. Mater. 23(8), 709–713 (1994)

    Article  Google Scholar 

  5. D.G. Ivey, Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications. Micron 29(4), 281–287 (1998)

    Article  Google Scholar 

  6. S. Sakamoto, S. Nagao, K. Suganuma, Thermal fatigue of Ag flake sintering die-attachment for Si/SiC power devices. J. Mater. Sci. Mater. Electron. 24(7), 2593–2601 (2013)

    Article  Google Scholar 

  7. C. Chen, S. Nagao, H. Zhang, J. Jiu, T. Sugahara, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, Mechanical deformation of sintered porous Ag die attach at high temperature and its size effect for wide-bandgap power device design. J. Electron. Mater. 46(3), 1576–1586 (2016)

    Article  Google Scholar 

  8. S.A. Paknejad, A. Mansourian, Y. Noh, K. Khtatba, S.H. Mannan, Thermally stable high temperature die attach solution. Mater. Des. 89, 1310–1314 (2016)

    Article  Google Scholar 

  9. K.S. Tan, K.Y. Cheong, Mechanical properties of sintered Ag–Cu die-attach nanopaste for application on SiC device. Mater. Des. 64, 166–176 (2014)

    Article  Google Scholar 

  10. J. Bultitude, J. Mcconnell, C. Shearer, High temperature capacitors and transient liquid phase interconnects for Pb-solder replacement. J. Mater. Sci. Mater. Electron. 26(12), 9236–9242 (2015)

    Article  Google Scholar 

  11. A. Davoodi Jamaloei, H.R. Salimijazi, H. Edris, J. Mostaghimi, Study of TLP bonding of Ti-6Al-4V alloy produced by vacuum plasma spray forming and forging. Mater. Des. 121, 355–366 (2017)

    Article  Google Scholar 

  12. R. Khazaka, L. Mendizabal, D. Henry, R. Hanna, Survey of high-temperature reliability of power electronics packaging components. IEEE Trans. Power Electron. 30(5), 2456–2464 (2015)

    Article  Google Scholar 

  13. A. Lis, C. Leinenbach, Effect of process and service conditions on TLP-bonded components with (Ag, Ni–)Sn interlayer combinations. J. Electron. Mater. 44(11), 1–13 (2015)

    Article  Google Scholar 

  14. H. Shao, A. Wu, Y. Bao, Y. Zhao, Elimination of pores in Ag–Sn TLP bonds by the introduction of dissimilar intermetallic phases. J. Mater. Sci. 52(6), 3508–3519 (2016)

    Article  Google Scholar 

  15. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, Interfacial reaction and mechanical properties for Cu/Sn/Ag system low temperature transient liquid phase bonding. J. Mater. Sci. Mater. Electron. 27(5), 1–10 (2016)

    Article  Google Scholar 

  16. V. Chidambaram, B. Chen, C.L. Gan, D.R.M. Woo, Au–In-based hermetic sealing for MEMS packaging for down-hole application. J. Electron. Mater. 43(7), 2498–2509 (2014)

    Article  Google Scholar 

  17. J.B. Lee, H.Y. Hwang, M.W. Rhee, Reliability investigation of Cu/In TLP bonding. J. Electron. Mater. 44(1), 435–441 (2015)

    Article  Google Scholar 

  18. K. Chu, Y. Sohn, C. Moon, A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scripta Mater. 109, 113–117 (2015)

    Article  Google Scholar 

  19. H. Xu, V. Vuorinen, H. Dong, M. Paulasto-Kröckel, Solid-state reaction of electroplated thin film Au/Sn couple at low temperatures. J. Alloys Compd. 619, 325–331 (2015)

    Article  Google Scholar 

  20. X. Deng, M. Koopman, N. Chawla, K.K. Chawla, Young’s modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation. Mater. Sci. Eng. A 364(1–2), 240–243 (2004)

    Article  Google Scholar 

  21. W.F. Gale, D.A. Butts, Transient liquid phase bonding. Sci. Technol. Weld. Joining 9(9), 283–300 (2013)

    Google Scholar 

  22. H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, Intermetallic compound formation mechanisms for Cu–Sn Solid–liquid interdiffusion bonding. J. Electron. Mater. 41(9), 2453–2462 (2012)

    Article  Google Scholar 

  23. J.F. Li, P.A. Agyakwa, C.M. Johnson, Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process. Acta Mater. 58(9), 3429–3443 (2010)

    Article  Google Scholar 

  24. Z.L. Li, H.J. Dong, X.G. Song, H.Y. Zhao, J.C. Feng, J.H. Liu, H. Tian, S.J. Wang, Rapid formation of Ni3Sn4 joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process. Ultrason. Sonochem. 36, 420–426 (2017)

    Article  Google Scholar 

  25. M. Hizukuri, N. Watanabe, T. Asano, Dynamic strain and chip damage during ultrasonic flip chip bonding. Jpn. J. Appl. Phys. 40(40), 3044–3048 (2001)

    Article  Google Scholar 

  26. O. Mokhtari, H. Nishikawa, The shear strength of transient liquid phase bonded Sn–Bi solder joint with added Cu particles. Adv. Powder Technol. 27(3), 1000–1005 (2016)

    Article  Google Scholar 

  27. O. Mokhtari, H. Nishikawa, Transient liquid phase bonding of Sn–Bi solder with added Cu particles. J. Mater. Sci. Mater. Electron. 27(5), 4232–4244 (2016)

    Article  Google Scholar 

  28. M. Fujino, H. Narusawa, Y. Kuramochi, E. Higurashi, T. Suga, T. Shiratori, M. Mizukoshi, Transient liquid-phase sintering using silver and tin powder mixture for die bonding. Jpn. J. Appl. Phys. 55(4S), 04EC14 (2016)

    Article  Google Scholar 

  29. J.F. Li, P.A. Agyakwa, C.M. Johnson, Suitable thicknesses of base metal and interlayer, and evolution of phases for Ag/Sn/Ag transient liquid-phase joints used for power die attachment. J. Electron. Mater. 43(4), 983–995 (2014)

    Article  Google Scholar 

  30. I. Karakaya, W.T. Thompson, The Ag–Sn (Silver–Tin) system. J. Phase Equilib. 8(4), 340–347 (1987)

    Google Scholar 

  31. S. Kumar, J. Jung, Mechanical and electronic properties of Ag3Sn intermetallic compound in lead free solders using ab initio atomistic calculation. Mater. Sci. Eng. B 178(1), 10–21 (2013)

    Article  Google Scholar 

  32. C.P. Lin, C.M. Chen, C.H. Lin, W.C. Su, Interfacial reactions of Sn/Ag/Cu tri-layer on a deformed polyimide substrate. J. Alloys Compd. 502(2), L17–L19 (2010)

    Article  Google Scholar 

  33. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, Microstructure characterization and mechanical behavior for Ag3Sn joint produced by foil-based TLP bonding in air atmosphere. Mater. Sci. Eng. A 680, 221–231 (2017)

    Article  Google Scholar 

  34. K. Suzuki, S. Kano, M. Kajihara, N. Kurokawa, K. Sakamoto, Reactive diffusion between Ag and Sn at solid state temperatures. Mater. Trans. JIM 46(5), 969–973 (2005)

    Article  Google Scholar 

  35. G. Ghosh, Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J. Mater. Res. 19(5), 1439–1454 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51375116) and the Science and Technology Project of Shenzhen (No. JCYJ20160318095308401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Yu, F., Chen, H. et al. Microstructure evolution during reflow and thermal aging in a Ag@Sn TLP bondline for high-temperature power devices. J Mater Sci: Mater Electron 29, 3014–3024 (2018). https://doi.org/10.1007/s10854-017-8232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8232-4

Navigation