Skip to main content
Log in

Fabrication of spiral inter-digitated terminal (IDT) structure of electroplated gold on quartz substrate and progressive microplasma generation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper discussed about the progressive microplasma generation in planar spiral inter-digitated terminal (IDT) structure. The IDT structures (with separation between two adjacent spiral electrodes varied progressively from 30 to 33 µm) are fabricated on quartz wafer by 5 µm thick gold electroplating. The onset of microplasma is witnessed around 580 V applied bias (Electric field: ~ 193 kV/cm). Initially, the microplasma is observed nearby the central area of the spiral IDT structure. Thereafter, the microplasma started spreading out other regions and finally engulfs the whole IDT with an intense glow. Although the bias is applied continuously, the microplasma generation in the spiral IDT structure is found to be discontinuous. It seems to be due to the discharge of the energy stored in the metal-air-metal capacitor (spiral IDT) during micro-plasma generation and thus reduces the resultant electric field below the threshold of microplasma generation. When the micro-plasma stops, the voltage at the IDT capacitors is again restored to its threshold value and microplasma is being observed again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Khalifa, High Voltage Engineering (Marcel Dekker, New York, 1990)

    Google Scholar 

  2. E. Kuffel, W.S. Zaengl, High Voltage Engineering Fundamentals (Pergamon Press, Oxford, 1984)

    Google Scholar 

  3. N.S.J. Braithwaite, Plasma Sources Sci. Technol. 9, 517–527 (2000)

    Article  Google Scholar 

  4. K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, R55–R70 (2006)

    Article  Google Scholar 

  5. D. Mariotti, J.A. McLaughlin, P. Maguire, Plasma Sources Sci. Technol. 13, 207–212 (2004)

    Article  Google Scholar 

  6. J. Winter, R. Brandenburg, K.D. Weltmann, Plasma Source Sci. Technol. 24, 064001 (2015)

    Article  Google Scholar 

  7. T.A. Baginski, U.S. Patent no. 6977468 (2005)

  8. A.J. Wagner, D. Mariotti, K.J. Yurchenko, T.K. Das, Phys. Rev. E 80, 065401 (2009)

    Article  Google Scholar 

  9. S.O. Kim, IEEE Trans. Plasma Sci. 36, 1244–1245 (2008)

    Article  Google Scholar 

  10. P.K. Kao, C.C. Hsu, Anal. Chem. 86, 8757–8762 (2014)

    Article  Google Scholar 

  11. Y.B. Gianchandani, S.A. Wright, C.K. Eun, C.G. Wilson, B. Mitra, Anal. Bioanal. Chem. 395, 559–575 (2009)

    Article  Google Scholar 

  12. T.A. Baginski, R.N. Dean, E.J. Wild, IEEE Trans. Compo. Packag. Manuf. Technol. 1, 1480–1485 (2011)

    Article  Google Scholar 

  13. R. Brandenburg, Plasma Sources Sci. Technol. 26, 053001 (2017)

    Article  Google Scholar 

  14. N. Shirai, Y. Onaka, S. Ibuka, K. Yasuoka, S. Ishii, Jpn. J. Appl. Phys. 46, 370–374 (2007)

    Article  Google Scholar 

  15. D. Luo, Y. Duan, TrAC Trends Anal. Chem. 39, 254–266 (2012)

    Article  Google Scholar 

  16. K. Taniguchi, T. Fukasawa, H. Yoshiki, Y. Horiike, Jpn. J. Appl. Phys. 42, 6584–6589 (2003)

    Article  Google Scholar 

  17. S. Dutta, R.K. Bhan, U. Kapoor, in 2017 IEEE Conference on Intelligent Systems and Control, pp. 398–401 (2017)

  18. J.J. Shi, M.G. Kong, Phys. Rev. Lett. 96, 105009 (2006)

    Article  Google Scholar 

  19. P. Bruggeman, R. Brandenburg, J. Phys. D 46, 464001 (2013)

    Article  Google Scholar 

  20. J. Choi, F. Iza, J.K. Lee, C.M. Ryu, IEEE Trans. Plasma Sci. 35, 1274–1278 (2007)

    Article  Google Scholar 

  21. Y.T. Zhang, L. Ge, IEEE Trans. Plasma Sci. 42(10), 3321–3327 (2014)

    Article  Google Scholar 

  22. M.J. Madau, Fundamental of Microfabrication—The Science of Miniaturization (CRC Press, London, 2002)

    Google Scholar 

  23. S. Dutta, Md Shaveta. R. Imran, R.K. Pal, Bhan, J. Mater. Sci.: Mater. Electron. 25, 3828–3832 (2014)

    Google Scholar 

  24. S. Dutta, R. Pal, P. Kumar, O.P. Hooda, J. Singh, G. Shaveta, P. Saxena, R. Datta, Chatterjee, Sens. Trans. 111, 18–24 (2009)

    Google Scholar 

  25. S. Dutta, R. Chatterjee, Mater. Sci. Eng. B 198, 74–79 (2015)

    Article  Google Scholar 

  26. K. Shimizu, Y. Mizuno, M. Blajan, H. Yoneda, IEEE Trans. Ind. Appl. 53, 1452–1458 (2017)

    Article  Google Scholar 

  27. S. Dutta, Md. Imran, A. Pandey, T. Saha, I. Yadav, R. Pal, K.K. Jain, R. Chatterjee, J. Mater. Sci.: Mater. Electron. 25, 382–389 (2014)

    Google Scholar 

  28. A.V. Likhanskii, M.N. Shneider, S.O. Macheret, R.B. Miles, J. Appl. Phys. 103, 053305 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director SSPL for his continuous support and for the permission to publish this work. The authors also acknowledge the help from Mr. Anand Kumar for the SEM images. Help from other colleagues of MEMS and IEEE groups of SSPL are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Kapoor, U., Kumar, L. et al. Fabrication of spiral inter-digitated terminal (IDT) structure of electroplated gold on quartz substrate and progressive microplasma generation. J Mater Sci: Mater Electron 29, 2825–2830 (2018). https://doi.org/10.1007/s10854-017-8211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8211-9

Navigation