Skip to main content
Log in

Optical and electrical performance of transparent conductive TiO2/Cu/TiO2 multilayers prepared by magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2/Cu/TiO2 (TCT) multilayers were deposited by dc pulsed magnetron sputtering on glass substrates for the possible use as transparent conducting oxide (TCO). The thicknesses of copper (Cud) interlayers were 0, 8, 10, 12, 13 and 15 nm. The changes in structural, optical and electrical properties of the TCT multilayers have been investigated as a function of Cud. XRD examination revealed that, all studied TCT multilayers have rutile TiO2 crystalline structure with different orientations, whereas no peaks have been indexed for the Cu. The refractive index (at 650 nm) of the TCT multilayers decreased from 2.39 to 1.90 and the optical band gap values decreased from 3.77 ± 0.02 to 3.66 ± 0.02 eV as the thickness of the Cu interlayer increased from 8 to 15 nm. It has been found that the electrical resistivity of TCT multilayers decreased from 1.4 × 10−4 to 3.2 × 10−5 Ω cm with increasing Cu interlayer thickness from 8 to 15 nm. The TCT film with 10 nm Cu interlayer has a sheet resistance of 13.7 Ω/sq, an average transmittance value of 87.1% (in the wavelength ranging from 500 to 800 nm) and highest figure of merit value of 1.84 × 10−2 Ω−1. Accordingly it can be considered as superlative TCT film which can be potentially used as transparent conductor electrode for solar cells and other optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Schütt, V. Postica, R. Adelung, O. Lupan, ACS Appl. Mater. Interfaces 9, 23107 (2017)

    Article  Google Scholar 

  2. A.M. Showkat, Y.-P. Zhang, M.S. Kim, A.I. Gopalan, K.R. Reddy, K.-P. Lee, Bull. Korean Chem. Soc. 28, 1985 (2007)

    Article  Google Scholar 

  3. M. Cakici, K.R. Reddy, F. Alonso-Marroquin, Chem. Eng. J. 309, 151 (2017)

    Article  Google Scholar 

  4. K.R. Reddy, K.P. Lee, A.I. Gopalan, Colloid Surf. A 320, 49 (2008)

    Article  Google Scholar 

  5. Y.-P. Zhang, S.-H. Lee, K.R. Reddy, A.I. Gopalan, K.-P. Lee, J. Appl. Polym. Sci. 104, 2743 (2007)

    Article  Google Scholar 

  6. K.R. Reddy, K.-P. Lee, A.I. Gopalan, J. Nanosci. Nanotechnol. 7, 3117 (2007)

    Article  Google Scholar 

  7. K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3692 (2011)

    Article  Google Scholar 

  8. K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Express 1, 015012 (2014)

    Article  Google Scholar 

  9. K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.-S. Lee, D. Sohn, Y. Lee, Scripta Mater. 58, 1010 (2008)

    Article  Google Scholar 

  10. G. Leftheriotis, P. Yianoulis, in Comprehensive Renewable Energy, vol. 3, ed. by A. Sayigh (Elsevier Ltd., Amsterdam, 2012), p. 326 (Chapter 3.10)

    Google Scholar 

  11. M. Hssein, S. Tuo, S. Benayoun, L. Cattin, M. Morsli, Y. Mouchaal, M. Addou, A. Khelil, J.C. Bernède, Org. Electron. 42, 173–180 (2017)

    Article  Google Scholar 

  12. T.-V. Dang, S.V.N. Pammi, J. Choi, S.-G. Yoon, Sol. Energy Mater. Sol. C 163, 58 (2017)

    Article  Google Scholar 

  13. T.-Ho Kim, S.-H. Park, D.-H. Kim, Y.-C. Nah, H.-K. Kim, Sol. Energy Mater. Sol. C. 160, 203 (2017). http://www.sciencedirect.com/science/journal/09270248/160/supp/C

  14. C. Guillén, J. Herrero, Thin Solid Films 520, 1 (2011)

    Article  Google Scholar 

  15. W. Wu, J. Bao, Z. Liu, W. Lin, X. Yu, L. Cai, B. Liu, J. Song, H. Shen, Mater. Lett. 189, 86–88 (2017)

    Article  Google Scholar 

  16. C. Bright, in Optical Thin Films and Coatings: From Materials to Applications, ed. by A. Piegari, F. Flory (Woodhead Publishing Limited, Cambridge, 2013), pp 741–788 (Chapter 21)

    Chapter  Google Scholar 

  17. G.K. Dalapati, S. Masudy-Panah, S.T. Chua, M. Sharma, T.I. Wong, H.R. Tan, D. Chi, Sci. Rep. 6, 20182 (2016)

    Article  Google Scholar 

  18. S.H. Mohamed, O. Kappertz, T.P. Leervad Pedersen, R. Drese, M. Wuttig, Phys. Stat. Sol. (a) 198, 224 (2003)

    Article  Google Scholar 

  19. S. Hong-Tao, W. Xiao-Ping, K. Zhi-Qi, W. Li-Jun, W. Jin-Ye, S. Yi-Qing, Chin. Phys. B 24, 047701 (2015)

    Article  Google Scholar 

  20. H.B. Wafula, R.J. Musembi, A.O. Juma, P. Tonui, J. Simiyu, T. Sakwa, D. Prakash, K.D. Verma, Optik 128, 212 (2017)

    Article  Google Scholar 

  21. S.H. Mohamed, M. El-Hagary, S. Althoyaib, Eur. Phys. J. Appl. Phys. 57, 20301 (2012)

    Article  Google Scholar 

  22. S. Ge, H. Xu, W. Wang, R. Cao, Y. Wu, W. Xu, J. Zhu, F. Xue, F. Hong, R. Xu, F. Xu, L. Wang, J. Huang, Vacuum 128, 91–98 (2016)

    Article  Google Scholar 

  23. H. Zhang, J. Yang, B. Chen, C. Liu, M. Zhang, C. Li, Appl. Surf. Sci. 359, 905 (2015)

    Article  Google Scholar 

  24. M. Raaif, S.H. Mohamed, Appl. Phys. A 123, 441 (2017)

    Article  Google Scholar 

  25. X. Ding, J. Yan, T. Li, L. Zhang, Appl. Surf. Sci. 258, 3082 (2012)

    Article  Google Scholar 

  26. A. Dhar, T.L. Alford, ECS Solid State Lett. 3, N33 (2014)

    Article  Google Scholar 

  27. S.H. Mohamed, J. Phys. Chem. Solids 69, 2378–2384 (2008)

    Article  Google Scholar 

  28. P.J. Kelly, J.W. Bradley, J. Optoelectron. Adv. Mater. 11, 1101 (2009)

    Google Scholar 

  29. S.H. Mohamed, J. Phys. D 43, 035406 (2010)

    Article  Google Scholar 

  30. P.B. Barna, M. Adamik, Thin Solid Films 317, 27 (1998)

    Article  Google Scholar 

  31. D. Kim, Trans. Electr. Electron. Mater 10, 165 (2009)

    Article  Google Scholar 

  32. J.C. Kim, C.H. Shin, C.W. Jeong, Y.J. Kwon, J.H. Park, D. Kim, Nucl. Instr. Meth. Phys. Res. B 268, 131 (2010)

    Article  Google Scholar 

  33. Y. Yoshino, K. Inoue, M. Takeuchi, T. Makino, Y. Katayama, T. Hata, Vacuum 59, 403 (2000)

    Article  Google Scholar 

  34. V. Sharma, P. Kumar, A. Kumar, K. Surbhi, K. Asokan, Sachdev, Sol. Energy Mater. Sol. C 169, 122 (2017)

    Article  Google Scholar 

  35. P.J. Kelly, R.D. Arnell, Vacuum 56(3), 159 (2000)

    Article  Google Scholar 

  36. J. Musil, D. Heřman, J. Šícha, J. Vac. Sci. Technol. A 24(3), 521 (2006)

    Article  Google Scholar 

  37. W. Zhang, Y. Li, S. Zhu, F. Wang, Surf. Coat. Technol. 182, 192 (2004)

    Article  Google Scholar 

  38. M.T. Le, Y.U. Sohn, J.W. Lim, G.S. Choi, Mater. Trans. 51, 116 (2010)

    Article  Google Scholar 

  39. H. Han, N.D. Theodore, T.L. Alford, J. Appl. Phys. 103, 013708 (2008)

    Article  Google Scholar 

  40. A. Indluru, T.L. Alford, J. Appl. Phys. 105, 123528 (2009)

    Article  Google Scholar 

  41. P.A. Anderson, Phys. Rev. 76, 388 (1949)

    Article  Google Scholar 

  42. E.W.J. Mitchell, J.W. Mitchell, Proc. R. Soc. Lond. A 210, 70 (1951)

    Article  Google Scholar 

  43. A. Borodin, M. Reichling, Phys. Chem. Chem. Phys. 13, 15442 (2011)

    Article  Google Scholar 

  44. G.X.R. Smith, R. Crook, J.D. Wadhawan, J. Phys. Conf. Ser. 471, 012045 (2013)

    Article  Google Scholar 

  45. A.G. Milnes, D.L. Feucht, Heterojunction and Metal Semiconductor Junctions. (Academic, New York, 1972)

    Google Scholar 

  46. S. Yu, L. Li, D. Xu, H. Dong, Y. Jin, Thin Solid Films 562, 501 (2014)

    Article  Google Scholar 

  47. Rohit Sumit Vyas, Kumar Tiwary, P. Shubham, Chakrabarti, Superlatt. Microstruct. 80, 215 (2015)

    Article  Google Scholar 

  48. S.-S. Lin, Ceram. Int. 38, 3129 (2012)

    Article  Google Scholar 

  49. B. Astinchap, R. Moradian, K. Gholami, Mater. Sci. Semicond. Process. 63, 169 (2017)

    Article  Google Scholar 

  50. Y.-X. Zhao, S. Han, Y. Lin, C.-H. Hu, L.-Y. Hua, C.T. Lee, Y.C. Hung, K.W. Wen, Surf. Coat. Technol. 320, 630 (2017)

    Article  Google Scholar 

  51. S. Nezar, N. Saoula, S. Sali, M. Faiz, M. Mekki, N.A. Laoufi, N. Tabet, Appl. Surf. Sci. 395, 172 (2017)

    Article  Google Scholar 

  52. C. Bundesmann, T. Lautenschläger, D. Spemann, A. Finzel, E. Thelandera, M. Mensing, F. Frost, Appl. Surf. Sci. 421, 331 (2017)

    Article  Google Scholar 

  53. O.S. Heavens, Optical Properties of Thin Films (Dover, New York, 1965)

    Google Scholar 

  54. O.S. Heavens, Thin Film Physics (Methuen, London, 1970)

    Google Scholar 

  55. S.H. Mohamed, E.R. Shaaban, Physica B 406, 4327 (2011)

    Article  Google Scholar 

  56. N. El-Kabnaya, E.R. Shaabanb, N. Afifya, A.M. Abou-sehly, Physica B 403 31 (2008)

    Article  Google Scholar 

  57. J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, T.-Y. Seong, Ceram. Int. 42, 14071 (2016)

    Article  Google Scholar 

  58. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Awad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, M.A., Raaif, M. Optical and electrical performance of transparent conductive TiO2/Cu/TiO2 multilayers prepared by magnetron sputtering. J Mater Sci: Mater Electron 29, 2815–2824 (2018). https://doi.org/10.1007/s10854-017-8210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8210-x

Navigation