Skip to main content
Log in

An organic silver complex conductive ink using both decomposition and self-reduction mechanisms in film formation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible electronics is of considerable interest for many applications due to the distinctive features of low-cost, flexibility and light weight capabilities. However, in translating the technology from research to practical applications one faces many challenges. One of them is to formulate suitable ink materials where the selection of functional components, for example in the case of organic silver ink, the silver precursor, complexing agent and volatile organic solvent, are very critical because these constituents determine the final properties of the ink. In this paper, a new type of silver organic ink with decomposition and self-reduction mechanisms (10 wt% silver content) was formulated. It is shown that the ink is capable of producing silver films with good uniformity and conductivity on a polyimide substrate after sintering at 155 °C. The effect of solvent on the thermal property of the formulated ink have been investigated by differential scanning calorimetry (DSC) and UV–Vis spectrscopy, where the active roles of the solvents and the underlying chemical reactions in the ink during heating were studied. The reaction mechanism between the complexing agent and the silver precursor was confirmed by FT-IR measurements. The effects of sintering temperature and time on the microstructure and electrical properties of the silver ink films have been studied in detail using XRD, SEM/EDX and 4-probe based techniques. The defects such as voids and cracks as well as the coffee rings, which are often associated with films produced from organic silver inks, were reduced significantly by using both decomposition and self-reduction mechanisms in film formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo, S.S. Lee, T.S. Kim, D. Lee, S.H. Ko, Adv. Funct. Mater. 23, 4171 (2013)

    Article  Google Scholar 

  2. X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao, Y. Zhang, Adv. Funct. Mater. 25, 2395 (2015)

    Article  Google Scholar 

  3. N. Dossi, F. Terzi, E. Piccin, R. Toniolo, G. Bontempelli, Electroanalysis 28, 250 (2016)

    Article  Google Scholar 

  4. Y. Jung, C. Yeom, H. Park, D. Jung, H. Koo, J. Noh, D. Wang, G. Cho, Org. Electron. 28, 197 (2016)

    Article  Google Scholar 

  5. T.M. Eggenhuisen, Y. Galagan, A.F.K.V. Biezemans, T.M.W.L. Slaats, W.P. Voorthuijzen, S. Kommeren, S. Shanmugam, S. Teunissen, A. Hadipour, W.J.H. Verhees, S.C. Veenstra, M.J.J. Coenen, J. Gilot, R. Andriessen, W.A. Groen, J. Mater. Chem. A 14, 7255 (2015)

    Article  Google Scholar 

  6. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, Q. Pei, ACS Nano 8, 1590 (2014)

    Article  Google Scholar 

  7. H. Gwon, H.S. Kim, K.U. Lee, D.H. Seo, Y.C. Park, Y.S. Lee, B.T. Ahn, K. Kang, Energy Environ. Sci. 4, 1277 (2011)

    Article  Google Scholar 

  8. N. Perinka, C.H. Kim, M. Kaplanova, Y. Bonnassieux, Phys. Proc. 44, 120 (2013)

    Article  Google Scholar 

  9. W.R. Small, M. in het Panhuis. Small 3, 1500 (2007)

    Article  Google Scholar 

  10. J.W. Han, B. Kim, J. Li, M. Meyyappan, Mater. Res. Bull. 50, 249 (2014)

    Article  Google Scholar 

  11. J.T. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Ostling, Adv. Mater. 25, 3985 (2013)

    Article  Google Scholar 

  12. R.V.K. Rao, V.K. Abhinav, P.S. Karthik, S.P. Singh, RSC Adv. 5, 77760 (2015)

    Article  Google Scholar 

  13. A. Kamyshny, S. Magdassi, Small 10, 3515 (2014)

    Article  Google Scholar 

  14. S.B. Walker, J.A. Lewis, J. Am. Chem. Soc. 134, 1419 (2012)

    Article  Google Scholar 

  15. R. Shankar, L. Groven, A. Amert, K.W. Whites, J.J. Kellar, J. Mater. Chem. 21, 10871 (2011)

    Article  Google Scholar 

  16. B.Y. Ahn, D.J. Lorang, J.A. Lewis, Nanoscale 3, 2700 (2011)

    Article  Google Scholar 

  17. W.D. Yang, C.Y. Liu, Z.Y. Zhang, Y. Liu, S.D. Nie, J. Mater. Chem. 22, 23012 (2012)

    Article  Google Scholar 

  18. Y. Chang, D.Y. Wang, Y.L. Tai, Z.G. Yang, J. Mater. Chem. 22, 25296 (2012)

    Article  Google Scholar 

  19. C.N. Chen, T.Y. Dong, T.C. Chang, M.C. Chen, H.L. Tsai, W.S. Hwang, J. Mater. Chem. 33, 5161 (2013)

    Google Scholar 

  20. Q.J. Huang, W.F. Shen, W.J. Song, Chem. Mater. 22, 3067 (2010)

    Article  Google Scholar 

  21. W.D. Yang, C.Y. Liu, Z.Y. Zhang, Y. Liu, S.D. Nie, RSC Adv. 4, 60144 (2014)

    Article  Google Scholar 

  22. S. Jeong, S.H. Lee, Y. Jo, S.S. Lee, Y.H. Seo, B.W. Ahn, G. Kim, G.E. Jang, J.U. Park, B.H. Ryu, Y. Choi, J. Mater. Chem. C 1, 2704 (2013)

    Article  Google Scholar 

  23. Y. Dong, X.D. Li, S.H. Liu, Q. Zhu, J.G. Li, X.D. Sun, Thin Solid Films 589, 381 (2015)

    Article  Google Scholar 

  24. Q.J. Huang, W.F. Shen, Q.S. Xu, R.Q. Tan, W.J. Song, Mater. Chem. Phys. 147, 550 (2014)

    Article  Google Scholar 

  25. J.T. Wu, S.L.C. Hsu, M.H. Tsai, Y.F. Liu, W.S. Hwang, J. Mater. Chem. 22, 15599 (2012)

    Article  Google Scholar 

  26. D.Y. Wang, Y. Chang, Q.S. Lu, Z.G. Yang, Mater. Tech. Adv. Perform. Mater. 30, 54 (2015)

    Google Scholar 

  27. X.L. Nie, H. Wang, H.J. Zou, Appl. Sur. Sci. 261, 554 (2012)

    Article  Google Scholar 

  28. A.L. Dearden, P.J. Smith, D.-Y. Shin, N. Reis, B. Derby, P. O’Brien, Macromol. Rapid Commun. 26, 315 (2005)

    Article  Google Scholar 

  29. Y.H. Choi, J. Lee, S.J. Kim, D.H. Yeon, Y. Byun, J. Mater. Chem. 22, 3624 (2012)

    Article  Google Scholar 

  30. Y.I. lee, Y.H. Choa, J. Mater. Chem. 22, 12517 (2012)

    Article  Google Scholar 

  31. T. Yonezawa, H. Tsukamoto, Y.Q. Yong, M.T. Nguyen, M. Matsubara, J. Mater. Chem. 6, 12048 (2016)

    Google Scholar 

  32. S.F. Jahn, T. Blaudeck, R.R. Baumann, A. Jakob, P. Ecorchard, T. Ruffer, H. Lang, P. Schmidt, Chem. Mater. 22, 3067 (2010)

    Article  Google Scholar 

  33. J.J. Chen, J. Zhang, Y. Wang, Y.L. Guo, Z.S. Feng, J. Mater. Chem. C 4, 10494 (2016)

    Article  Google Scholar 

  34. D.Y. Deng, Y.R. Cheng, Y.X. Jin, T.K. Qi, F. Xiao, ACS Appl. Mater. Interfaces 5, 3839 (2013)

    Article  Google Scholar 

  35. Y. Hokita, M. Kanzaki, T. Sugiyama, R. Arakawa, H. Kawasaki, ACS Appl. Mater. Interfaces 7, 19382 (2015)

    Article  Google Scholar 

  36. D.H. Shin, S. Woo, H. Yem, M. Cha, S. Cho, M. Kang, S. Jeong, Y. Kim, K. Kang, Y. Piao, ACS Appl. Mater. Interfaces 6, 3312 (2014)

    Article  Google Scholar 

  37. B.Y. Wang, T.H. Yoo, Y.W. Song, D.S. Lim, Y.J. Oh, ACS Appl. Mater. Interfaces 5, 4113 (2013)

    Article  Google Scholar 

  38. Y. Farraj, M. Grouchko, S. Magdassi, Chem. Commun. 51, 1587 (2015)

    Article  Google Scholar 

  39. Y. Tao, B. Wang, L. Wang, Y. Tai, Nanoscale Res. Lett. 8, 1 (2013)

    Article  Google Scholar 

  40. A. Yabuki, Y. Tachibana, I.W. Fathona, Mater. Chem. Phys. 148, 299 (2014)

    Article  Google Scholar 

  41. K. Black, S. Jetinder, M. Danielle, S. Sarah, J.C. Sutcliffe, R.P. Paul, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  42. K. Zope, Novel synthesis of a solid silver oxalate complex used for printing conductive traces, (Thesis of Rochester Institue of Technology, 2017). http://scholarworks.rit.edu/theses/9381. Accessed 11 Januraury 2017

  43. J.D. Torrey, T.L. Kirschling, L.F. Greenlee, J. Res. Natl. Inst. Stand. Technol. 120, 1 (2015)

    Article  Google Scholar 

  44. N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid, Nano Lett. 4, 383 (2004)

    Article  Google Scholar 

  45. G. Corro, U. Pal, E. Ayala, E. Vidal, Catal. Today 212, 63 (2013)

    Article  Google Scholar 

  46. M. Nadafan, R. Malekfar, A. Izadi-Darbandi, Z. Dehghani, Desalination Water Treat 57, 21286 (2016)

    Article  Google Scholar 

  47. Y. Dong, X. Li, S. Liu, Q. Zhu, M. Zhang, J.G. Li, X. Sun, Thin Solid Films 616, 635 (2016)

    Article  Google Scholar 

  48. X.W. Hu, L.H. Li, S.M. Zhao, X. Leng, Adv. Mater. Res. 577, 287 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Mark Leonard and Dr. Jim Buckman for their assistance in the surface profilometry and EDX work respectively. Wendong Yang was supported by an EPSRC DTP studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, C. & Arrighi, V. An organic silver complex conductive ink using both decomposition and self-reduction mechanisms in film formation. J Mater Sci: Mater Electron 29, 2771–2783 (2018). https://doi.org/10.1007/s10854-017-8205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8205-7

Navigation