Skip to main content
Log in

Electrochemical behaviors of iron-based layered double hydroxide thin-films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ordered ultrathin films based on the fabrication of Mg/Fe-LDHs ([Mg6Fe2(OH)16CO3·(H2O)4.5]0.375) nanosheets and hexacyanoferrate(III) anions via the self-assembly procedure were prepared. The electrodes modified by the films demonstrated a couple of well-defined reversible redox peaks attributed to [Fe(CN)6]3−/4− and Fe2+/3+ couples. The effects of cycle number, scan rate and Mg/Fe molar ratio on the CV performance of the thin-film electrodes were observed in K3[Fe(CN)6] electrolyte. The [Fe(CN)6]3− pillared Mg/Fe-LDHs with Mg/Fe molar ratio of 3 (LDH-(CN)-3) demonstrated an excellent electrochemical behavior with a potential window between − 0.2 and 1.0 V, high specific capacitance and sensitivity, indicating that the high crystallinity, large specific surface area and plentiful [Fe(CN)6]3− anions in interlayer spaces were necessary. Especially, the interlayer [Fe(CN)6]3− anions significantly affected the electrochemical behavior of the electrode, where the electrode reaction was controlled by the diffusion of [Fe(CN)6]3−/4− and Fe2+/3+ couples. Under current density of 2.5 A g−1, the optimized LDH-(CN)-3 electrode exhibited high specific capacitance of 250.81 F g−1 with good cycling stability. This facile synthesis strategy and the good electrochemical properties indicated that the LDH-(CN)-3 was a potential economical alternative material for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 24, 934 (2014)

    Article  Google Scholar 

  2. M. Shao, J. Han, W. Shi, M. Wei, X. Duan, Electrochem. Commun. 12, 1077 (2010)

    Article  Google Scholar 

  3. Z.P. Xu, L. Li, C.Y. Cheng, R. Ding, C. Zhou, Appl. Clay Sci. 74, 102 (2013)

    Article  Google Scholar 

  4. Q. Wang, D. O’Hare, Chem. Rev. 112, 4124 (2012)

    Article  Google Scholar 

  5. M. Li, J.P. Cheng, J.H. Fang, Y. Yang, F. Liu, X.B. Zhang, Electrochim. Acta 134, 309 (2014)

    Article  Google Scholar 

  6. B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, L. Liu, J. Power Sources 246, 747 (2014)

    Article  Google Scholar 

  7. Y. Wang, W. Yang, C. Chen, D.G. Evans, J. Power Sources 184, 682 (2008)

    Article  Google Scholar 

  8. C. Mousty, Appl. Clay Sci. 27, 159 (2004)

    Article  Google Scholar 

  9. C. Zhao, W. Zheng, X. Wang, H. Zhang, X. Cui, H. Wang, Sci. Rep. 3, 2986 (2013)

    Article  Google Scholar 

  10. K. Itaya, H.C. Chang, I. Uchida, Inorg. Chem. 26, 624 (1987)

    Article  Google Scholar 

  11. J. Labuda, M. Hudáková, Electroanalysis 9, 239 (1997)

    Article  Google Scholar 

  12. J. Han, H.Y. Zeng, X. Cao, C.R. Chen, J. Mater. Sci. 28, 2754 (2017)

    Google Scholar 

  13. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340, 1226419 (2013)

    Article  Google Scholar 

  14. Y. Wimalasiri, R. Fan, X.S. Zhao, L. Zou, Electrochim. Acta 134, 127 (2014)

    Article  Google Scholar 

  15. S. Xu, H.Y. Zeng, C.R. Cheng, H.Z. Duan, J. Han, P.X. Ding, G.F. Xiao, RSC Adv. 5, 71278 (2015)

    Article  Google Scholar 

  16. Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 128, 4872 (2006)

    Article  Google Scholar 

  17. H.Y. Zeng, J.Z. Du, S. Xu, M.C. Liao, X.J. Liu, H.Z. Duan, C.R. Chen, RSC Adv. 5, 64814 (2015)

    Article  Google Scholar 

  18. W.G. Hou, Y.L. Su, D.J. Sun, C.G. Zhang, Langmuir 17, 1885 (2001)

    Article  Google Scholar 

  19. F. Cavani, F. Trifirò, A. Vaccari, Catal. Today 11, 173 (1991)

    Article  Google Scholar 

  20. Q.J. Huang, H.Y. Zeng, W. Zhang, B. Feng, X.J. Liu, H.Z. Duan, P.X. Ding, J. Taiwan Inst. Chem. Eng. 60, 525 (2016)

    Article  Google Scholar 

  21. B.E. Prasad, M. Dinamani, P.V. Kamath, S.H. Mehta, J. Colloid Interface Sci. 348, 216 (2010)

    Article  Google Scholar 

  22. J.T. Rajamathi, N.H. Raviraj, M.F. Ahmed, M. Rajamathi, Solid State Sci. 11, 2080 (2009)

    Article  Google Scholar 

  23. R.L. Frost, A.W. Musumeci, J. Bouzaid, M.O. Adebajo, W.N. Martens, J.T. Kloprogge, J. Solid State Chem. 178, 1940 (2005)

    Article  Google Scholar 

  24. M.J. Holgado, V. Rives, M.S. Sanroman, P. Malet, Solid State Ion. 92, 273 (1996)

    Article  Google Scholar 

  25. S. Xu, M.C. Liao, H.Y. Zeng, C.R. Chen, H.Z. Duan, X.J. Liu, J.Z. Du, Appl. Clay Sci. 115, 124 (2015)

    Article  Google Scholar 

  26. S. Xu, M.C. Liao, H.Y. Zeng, X.J. Liu, J.Z. Du, P.X. Ding, W. Zhang, J. Taiwan Inst. Chem. Eng. 56, 174 (2015)

    Article  Google Scholar 

  27. F.M. Labajos, V. Rives, P. Malet, M.A. Centeno, M.A. Ulibarri, Inorg. Chem. 35, 1154 (1996)

    Article  Google Scholar 

  28. M.M. Rao, B.R. Reddy, M. Jayalakshmi, V.S. Jaya, B. Sridhar, Mater. Res. Bull. 40, 347 (2005)

    Article  Google Scholar 

  29. A. Gervasini, Appl. Catal. A 180, 71 (1999)

    Article  Google Scholar 

  30. K.S. Tan, M.V. Reddy, G.S. Rao, B.V.R. Chowdari, J. Power Sources 147, 241 (2005)

    Article  Google Scholar 

  31. P.T. Kissinger, W.R. Heineman, J. Chem. Educ. 60, 702 (1983)

    Article  Google Scholar 

  32. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    Article  Google Scholar 

  33. A. Safavi, N. Maleki, O. Moradlou, M. Sorouri, Electrochem. Commun. 10, 420 (2008)

    Article  Google Scholar 

  34. B. Liu, H. Yuan, Y. Zhang, Int. J. Hydrogen Energy 29, 453 (2004)

    Article  Google Scholar 

  35. B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 66, 1 (1997)

    Article  Google Scholar 

  36. X. Kong, J. Zhao, J. Han, D. Zhang, M. Wei, X. Duan, Electrochim. Acta 56, 1123 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Joint Research Program of Hunan Provincial Natural Science Foundation (Xiangtan) of China (2016JJ5030), Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization and General project of Hunan Provincial Education Department (17C1526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yan Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, PX., Zeng, HY., Xu, S. et al. Electrochemical behaviors of iron-based layered double hydroxide thin-films. J Mater Sci: Mater Electron 29, 2748–2757 (2018). https://doi.org/10.1007/s10854-017-8202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8202-x

Navigation