Skip to main content
Log in

Synthesis and ionic conductivities of M (Mg, Ba, Zr) and Al co-doped apatite-type lanthanum germanate electrolytes for IT-SOFC

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the structure and ionic conductivities have been investigated for M (Mg, Ba, Zr) and Al co-doped apatite-type lanthanum germanates. La9.0.5Ge5.5Al0.5O26±δ (M = Mg, Ba and Zr) were prepared by solid state reaction. The results of XRD analysis showed that the space group is P63/m. M (Mg, Ba, Zr) substituting La site and Al substituting Ge site increased the cell volume and improved the lattice distortion of the apatite structure. In addition, M (Mg, Ba, Zr) and Al doping facilitated sintering and improved the relative density. Analysis of AC impedance spectroscopy showed that M (Mg, Ba, Zr) and Al co-doping in lanthanum germanates introduced local distortion and improved the ionic conductivities. Moreover, the thermal expansion coefficient (TEC) of La9.5M0.5Ge5.5Al0.5O26±δ (M = Mg, Ba and Zr) was improved after doping with M (Mg, Ba, Zr) and Al ions. La9.5Mg0.5Ge5.5Al0.5O26.5 sintered at 1400 °C exhibited the highest conductivity (1.26 × 10−2 S/cm, 800 °C) and improving TEC, which suggests that the (M (Mg, Ba, Zr), Al) doped apatite-type lanthanum germanate can be a potential material for the IT-SOFC electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Appl. Surf. Sci. 423(23), 1025–1034 (2017)

    Article  Google Scholar 

  2. A. Sobhani-Nasab, H. Naderi, M. Rahimi-Nasrabadi, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 28(12), 1–8 (2017)

    Google Scholar 

  3. A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, S. Mostafa, J. Mol. Struct. 1139, 430–435 (2017)

    Article  Google Scholar 

  4. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35, 374–381 (2017)

    Article  Google Scholar 

  5. G. Hua, X. Ding, W. Zhu, J. Li, J. Mater. Sci.: Mater. Electron. 26(6), 3664–3669 (2015)

    Google Scholar 

  6. R. Pandey, P. Singh, Ceram. Int. 43, 11692–11698 (2017)

    Article  Google Scholar 

  7. Q. Shi, H. Zhang, T. Li, F. Yu, P. Han, J. Rare Earths 33, 304–309 (2015)

    Article  Google Scholar 

  8. K. Tanwar, N. Jaiswal, V.D. Bhargavi, K. Bhimani, O. Parkash, Int. J. Hydrogen Energy 36(22), 22354–22360 (2016)

    Article  Google Scholar 

  9. S.L. Zhang, C.X. Li, C.J. Li, G.-J. Yang, M. Liu, J. Power Sources 301, 62–71 (2016)

    Article  Google Scholar 

  10. X. Gao, T. Liu, X. Zhang, B. He, J. Yu, Solid State Ionics 304, 135–144 (2017)

    Article  Google Scholar 

  11. S. Nakayama, T. Kageyama, H. Aono, Y. Sadaokac, J. Mater. Chem. 5, 1801–1805 (1995)

    Article  Google Scholar 

  12. P.J. Panteix, I. Julien, D. Bernache-A, P. Abélard, Mater. Chem. Phys. 95, 313–320 (2006)

    Article  Google Scholar 

  13. C. Tian, J. Liu, J. Cai, Y. Zeng, J. Alloys Compd. 245, 378–382 (2008)

    Article  Google Scholar 

  14. J.E.H. Sansom, D. Richings, P.R. Slater, Solid State Ionics 139, 205–210 (2001)

    Article  Google Scholar 

  15. J.E.H. Sansom, J.R. Tolchard, P.R. Slater, et al., Solid State Ionics 167, 17–22 (2004)

    Article  Google Scholar 

  16. J.R. Tolchard, M.S. Islam, P.R. Slater, J. Mater. Chem. 13, 1956–1961 (2003)

    Article  Google Scholar 

  17. S. Nakayama, Y. Higuchi, M. Sugawara, et al., Ceram. Int. 40, 1221–1224 (2014)

    Article  Google Scholar 

  18. H. Yoshioka, J. Alloys Compd. 408–412, 649–652 (2006)

    Article  Google Scholar 

  19. A. Pons, J. Jouin, E. Béchade, et al., Solid State Sci. 38, 150–155 (2014)

    Article  Google Scholar 

  20. J. Xiang, Z.G. Liu, J.H. Ouyang, Ceram. Int. 40, 2401–2410 (2014)

    Article  Google Scholar 

  21. A. Vincent, S.B. Savignat, F. Gervais, J. Eur. Ceram. Soc. 27, 1187–1192 (2007)

    Article  Google Scholar 

  22. Y. Ma, N. Fenineche, O. Elkedim, M. Moliere, et al., Int. J. Hydrogen Energy 41(23), 9993–10000 (2016)

    Article  Google Scholar 

  23. Y. Feng, L. Daia, W. Meng, et al., Ceram. Int. 43, 289–295 (2017)

    Article  Google Scholar 

  24. Y.V. Pivak, V.V. Kharton, A.A. Yaremchenko, et al., J. Eur. Ceram. Soc. 27, 2445–2454 (2007)

    Article  Google Scholar 

  25. A. Najib, J.E.H. Sansom, J.R. Tolchard, et al., Dalton Trans. 19, 3106–3109 (2004)

    Article  Google Scholar 

  26. J. Xiang, J.H. Ouyang, Z.G. Liu, Electrochim. Acta 153, 287–294 (2015)

    Article  Google Scholar 

  27. J. Xiang, J.H. Ouyang, Z.G. Liu, J. Power Sources 284, 49–55 (2015)

    Article  Google Scholar 

  28. Y.F. Hsu, W.J. Lin, S.F. Wang, Y.F. Hsu, W.J. Lin, K. Kobayashi, Fuel Cells 14(2), 144–152 (2014)

    Article  Google Scholar 

  29. L. Marrero-López, L. dos Santos-Gómez, León-Reina, et al., J. Power Sources 245, 107–118 (2014)

    Article  Google Scholar 

  30. A. Inoubli, M. Kahlaoui, I. Sobrados, et al., J. Power Sources 271, 203–212 (2014)

    Article  Google Scholar 

  31. Y. Mineshige, R. Ohnishi, Sakamoto, et al., Solid State Ionics 192, 195–199 (2011)

    Article  Google Scholar 

  32. A. Mineshige, H. Mieda, M. Manabe, et al., Solid State Ionics 262, 555–558 (2014)

    Article  Google Scholar 

  33. D.D.Y. Setsoafia, P. Hing, S.C. Jung, et al., Solid State Sci 48, 163–170 (2015)

    Article  Google Scholar 

  34. X.G. Cao, S.P. Jiang, J. Alloys Compd. 523, 127–133 (2012)

    Article  Google Scholar 

  35. X.G. Cao, S.P. Jiang, Int. J. Hydrogen Energy 39, 19093–19101 (2014)

    Article  Google Scholar 

  36. H. Zhang, F. Li, J. Jin, Q. Wang, Y. Sun, Solid State Ionics 179, 1024–1028 (2008)

    Article  Google Scholar 

  37. K. Imaizumi, K. Toyoura, A. Nakamura, K. Matsunaga, Solid State Ionics 262, 512–516 (2014)

    Article  Google Scholar 

  38. D. Kioupis, G. Kakali, Ceram. Int. 42, 9640–9647 (2016)

    Article  Google Scholar 

  39. B. Li, W. Liu, W. Pan, J. Power Sources 195, 2196–2201 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank to all those who have helped me during the writing of this paper, such as Professor Zhang Hua, Mr Li, Dr Han, and so on.

Funding

The work was supported by the support of the National Natural Science Foundation of China (No. 51402251), the Natural Science Foundation of Jiangsu Province (No. BK20150431), and a project funded by the Flagship Major Development of Jiangsu Higher Education Institutions (No. PPZY2015A025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingle Shi or Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Li, T., Cai, Y. et al. Synthesis and ionic conductivities of M (Mg, Ba, Zr) and Al co-doped apatite-type lanthanum germanate electrolytes for IT-SOFC. J Mater Sci: Mater Electron 29, 2725–2732 (2018). https://doi.org/10.1007/s10854-017-8199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8199-1

Navigation