Skip to main content
Log in

Electrochemical performance of Sn-doped δ-MnO2 hollow nanoparticles for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn-doped δ-MnO2 (Sn-MnO2) hollow nanoparticles have been synthesized via chemical process at room temperature. Many characterizations have been carried out to fully identify the intrinsic information of the as-prepared samples and investigate their electrochemical properties. The results indicate that the morphologies of the samples can be adjusted by changing the concentration of Sn while the capacitance of Sn-MnO2 nanoparticles increased corresponded with that of the undoped δ-MnO2 nanoparticles. The specific capacitance of Sn(1 at.%)-MnO2 is up to 258.2 F g− 1 at a current density of 0.1 A g− 1. What’s more, over 90% of the initial specific capacitance still remains after 1000 cycles at a current density of 2.0 A g− 1, displaying excellent cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Yu, X. Zhang, Y. Chen, Y.W. Ma, Z.P. Qi, Mater. Chem. Phys. 118, 303–307 (2009)

    Article  Google Scholar 

  2. T. Wang, F. Dong, Y.X. Zhang, Mater. Lett. 171, 319–322 (2016)

    Article  Google Scholar 

  3. J.R. Miller, P. Simon, Mater. Sci. 321, 651–652 (2008)

    Google Scholar 

  4. W.D. He, W.J. Yang, C.G. Wang, X.L. Deng, B.D. Liu, X.J. Xu, Phys. Chem. Chem. Phys. 18, 15235–15243 (2016)

    Article  Google Scholar 

  5. Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, ACS Nano 4, 5835–5842 (2010)

    Article  Google Scholar 

  6. Z. Lei, F. Shi, L. Lu, ACS Appl. Mater. Interfaces 4, 1058–1064 (2012)

    Article  Google Scholar 

  7. W. Meng, W. Chen, L. Zhao, Y. Huang, M. Zhu, Y. Huang, Y. Fu, F. Geng, J. Yu, X. Chen, C. Zhi, Nano Energy 8, 133–140 (2014)

    Article  Google Scholar 

  8. G.A. Ferrero, A.B. Fuertes, M. Sevilla, Electrochim. Acta 168, 320–329 (2015)

    Article  Google Scholar 

  9. D.W. Su, H.J. Ahn, G.X. Wang, J. Mater. Chem. A 1, 4845–4850 (2013)

    Article  Google Scholar 

  10. Y. Li, Z. Wang, J. Yao, T. Yang, Z. Wang, J.M. Hu, C. Chen, R. Sun, Z. Tian, J. Li, L. Chen, D. Viehland, Nat. Commun. 6, 7680–7687 (2015)

    Article  Google Scholar 

  11. X.H. Tang, Z.H. Liu, C.X. Zhao, Z.P. Yang, Z.L. Wang, J. Power Sources 193, 939–943 (2009)

    Article  Google Scholar 

  12. G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  13. M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, J. Mater. Chem. A 3, 21380–21423 (2015)

    Article  Google Scholar 

  14. J.G. Wang, F.Y. Kang, B.Q. Wei, Prog. Mater. Sci. 74, 51–124 (2015)

    Article  Google Scholar 

  15. S. Devaraj, N. Munichandraiah, J. Phys. Chem. C 112, 4406–4417 (2008)

    Article  Google Scholar 

  16. Z. Li, Z. Liu, D. Li, B. Li, Q. Li, Y. Huang, H. Wang, J. Mater. Sci. 26, 353–359 (2014)

    Google Scholar 

  17. J. Wang, S. Yang, Y. Zhang, T. Li, S. Zhao, Eng. Chem. Res. 53, 20116–20123 (2014)

    Article  Google Scholar 

  18. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 2822–2830 (2010)

    Article  Google Scholar 

  19. X. Zhang, P. Yu, H.T. Zhang, D.C. Zhang, X.Z. Sun, Y.W. Ma, Electrochim. Acta 89, 523–529 (2013)

    Article  Google Scholar 

  20. W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, J. Phys. Chem. A 22, 14864–14867 (2012)

    Google Scholar 

  21. J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Nano Lett. 14, 831–838 (2014)

    Article  Google Scholar 

  22. X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, ACS Nano 6, 9200–9206 (2012)

    Article  Google Scholar 

  23. L.H. Bao, J.F. Zang, X.D. Li, Nano Lett. 11, 1215–1220 (2011)

    Article  Google Scholar 

  24. Z.M. Hu, X. Xiao, C. Chen, T.Q. Li, L. Huang, C.F. Zhang, J. Su, L. Miao, J.J. Jiang, Y.R. Zhang, J. Zhou, Nano Energy 11, 226–234 (2015)

    Article  Google Scholar 

  25. C.L. Tang, X. Wei, Y.M. Jiang, X.Y. Wu, L.N. Han, K.X. Wang, J.S. Chen, J. Phys. Chem. C 119, 8465–8471 (2015)

    Article  Google Scholar 

  26. X.H. Su, L. Yu, G. Cheng, H.H. Zhang, M. Sun, L. Zhang, J.J. Zhang, Appl. Energy 134, 439–445 (2014)

    Article  Google Scholar 

  27. H.Z. Chi, Y.W. Li, Y.X. Xin, H.Y. Qin, Chem. Commun. 50, 13349–13352 (2014)

    Article  Google Scholar 

  28. S.Q. Zhao, T.M. Liu, Y. Zhang, W. Zeng, T.M. Li, S. Hussain, D.W. Hou, X.H. Peng, J. Mater. Sci. 27, 3265–3270 (2016)

    Google Scholar 

  29. X. Ge, X.Y. Song, Y. Ma, H.J. Zhou, G.Z. Wang, H.M. Zhang, Y.X. Zhang, H.J. Zhao, P.K. Wong, J. Mater. Chem. A 4, 14814–14826 (2016)

    Article  Google Scholar 

  30. Z.Y. Wang, F.P. Wang, Y. Li, J.L. Hu, Y.Z. Lu, M. Xu, Nanoscale 8, 7309–7317 (2016)

    Article  Google Scholar 

  31. R. Poonguzhali, N. Shanmugam, R. Gobi, A. Senthilkumar, R. Shanmugam, K. Sathishkumar, RSC Adv. 5, 45407–45415 (2015)

    Article  Google Scholar 

  32. Y.S. Wang, D.S. Tsai, W.H. Chung, Y.S. Syu, Y.S. Huang, Electrochim. Acta 68, 95–102 (2012)

    Article  Google Scholar 

  33. J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Adv. Mater. 20, 452–456 (2008)

    Article  Google Scholar 

  34. W. Zhou, X. Liu, Y. Sang, Z. Zhao, K. Zhou, H. Liu, S. Chen, ACS Appl. Mat. Interfaces 6, 4578–4586 (2014)

    Article  Google Scholar 

  35. V. Subramanian, H. Zhu, B. Wei, J. Power Sources 159, 361–364 (2006)

    Article  Google Scholar 

  36. A. Vlad, N. Singh, J. Rolland, S. Melinte, P.M. Ajayan, J.F. Gohyc, Sci. Rep. 4, 4315 (2014)

    Article  Google Scholar 

  37. J. Li, H.C. Zeng, J. Am. Chem. Soc. 129, 15839–15847 (2007)

    Article  Google Scholar 

  38. P. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S.J. Hwang, J.H. Choy, N. Munichandraiah, J. Phys. Chem. C 113, 6303–6309 (2009)

    Article  Google Scholar 

  39. M.M. Chen, X.Y. Zhang, L.Q. Wang, C.Y. Wang, Ind. Eng. Chem. Res. 53, 10974–10981 (2014)

    Article  Google Scholar 

  40. B. Wang, Q. Liu, Z.Y. Qian, X.F. Zhang, J. Wang, Z.S. Li, H.J. Yan, Z. Gao, F.B. Zhao, L.H. Liu, J. Power Sources 246, 747–753 (2014)

    Article  Google Scholar 

  41. S.M. Dong, X. Chen, L. Gu, X.H. Zhou, G.G. Cui, Energy Environ. Sci. 4, 3502–3508 (2011)

    Article  Google Scholar 

  42. A. Hauch, A. Georg, Electrochim. Acta 46, 3457–3466 (2001)

    Article  Google Scholar 

  43. M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li, J. Solid State Electrochem. 11, 1101–1107 (2007)

    Article  Google Scholar 

  44. M.W. Xu, L.B. Kong, W.J. Zhou, H.L. Li, J. Phys. Chem. C 111, 19141–19147 (2007)

    Article  Google Scholar 

  45. H.R. Ghenaatian, M.F. Mousavi, M.S. Rahmanifar, Electrochim. Acta 78, 212–222 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities Key Project (No. XDJK2017B062), the Central Universities Student Program (No. XDJK2017D011) and the National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201710635009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, J., Lin, H., Mao, Z. et al. Electrochemical performance of Sn-doped δ-MnO2 hollow nanoparticles for supercapacitors. J Mater Sci: Mater Electron 29, 2689–2697 (2018). https://doi.org/10.1007/s10854-017-8195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8195-5

Navigation