Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts

  • Mitra Mousavi
  • Aziz Habibi-YangjehEmail author
  • Shima Rahim Pouran


Graphitic carbon nitride (g-C3N4) has gained remarkable acceptance as a visible-light-driven photocatalyst with a distinctive 2D structure and great stability. Owing to its superior features, g-C3N4 has been engaged in various scientific activities for environmental pollution abatement, production and storage of energy, and gas sensors. However, the visible-light efficiency of pure g-C3N4 is very poor and its separation from the phototreated systems is difficult. The most promising method to improve the photocatalytic activity and facilitate separation process is to introduce a magnetic compound over the g-C3N4 sheets. This review has mainly focused on the recent advancement in fabrication, characterization and application of magnetic g-C3N4-based nanocomposites. Accordingly, four primary g-C3N4-based nanocomposites are discussed based on the type of integrated magnetic material. The effects on the structure, physico-chemical properties, photocatalytic activity towards degradation of pollutants, hydrogen generation, solid phase extraction, lithium-ion batteries, gas sensors, and supercapacitors are also discussed in detail.



The authors wish to acknowledge University of Mohaghegh Ardabili-Iran, for financial support of this work. Shima Rahim Pouran as a postdoc researcher gratefully acknowledges the support of National Elites Foundation.


  1. 1.
    J.G. Pastora, S. Dominguez, E. Bringas, M.J. Rivero, I. Ortiz, D.D. Dionysiou, Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407–427 (2017)CrossRefGoogle Scholar
  2. 2.
    J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut. 205, 187–204 (2010)CrossRefGoogle Scholar
  3. 3.
    C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches. J. Environ. Manag. 182, 351–366 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Escobar, G. Nieto, H. García, Simple tertiary treatment systems. Water Sci. Technol. 5, 35–41 (2005)Google Scholar
  5. 5.
    X.P. Wang, D.C. Sun, T.D. Yao, Climate change and global cycling of persistent organic pollutants: a critical review. Sci. China Earth Sci. 59, 1899–1911 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfeg, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016)CrossRefGoogle Scholar
  7. 7.
    E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B 166–167, 603–643 (2015)CrossRefGoogle Scholar
  8. 8.
    F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B 202, 217–261 (2017)CrossRefGoogle Scholar
  9. 9.
    B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem. Eng. Process. 109, 178–189 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Mamba, A. Mishra, Advances in magnetically separable photocatalysts: smart, recyclable materials for water pollution mitigation. Catalysts 6, 79 (2016)CrossRefGoogle Scholar
  11. 11.
    C.A. Basha, K.V. Selvakumar, H.J. Prabhu, P. Sivashanmugam, C.W. Lee, Degradation studies for textile reactive dye by combined electrochemical, microbial and photocatalytic methods. Sep. Purif. Technol. 79, 303–309 (2011)CrossRefGoogle Scholar
  12. 12.
    Z. Aksu, G. Dönmez, Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem. 40, 2443–2454 (2005)CrossRefGoogle Scholar
  13. 13.
    U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C 9, 1–12 (2008)CrossRefGoogle Scholar
  14. 14.
    V.C. Padmanaban, M.S.G. Nandagopal, G.M. Priyadharshini, N. Maheswari, G.J. Sree, N. Selvaraju, Advanced approach for degradation of recalcitrant by nanophotocatalysis using nanocomposites and their future perspectives. Int. J. Environ. Sci. Technol. 13, 1591–1606 (2016)CrossRefGoogle Scholar
  15. 15.
    A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts 3, 189–218 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, J. Sun, Recent developments in heterogeneous photocatalytic water treatment using visible light responsive photocatalysts: a review. RSC Adv. 5, 14610–14630 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Nikokavoura, C. Trapalis, Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2. Appl. Surf. Sci. 391, 149–174 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Gu, C. Li, S. Yuan, M. Ma, Y. Qiang, J. Zhu, ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology 27, 402001–402021 (2016)CrossRefGoogle Scholar
  21. 21.
    M.A. Mohd Adnan, N.M. Julkapli, S.B. Abd Hamid, Review on ZnO hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation. Rev. Inorg. Chem. 36, 77–104 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts. Appl. Catal. B 202, 620–641 (2017)CrossRefGoogle Scholar
  23. 23.
    P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 91, 94–103 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Pirhashemi, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J. Colloid Interface Sci. 491, 216–229 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, Novel magnetically separable ZnO/AgBr/Fe3O4/Ag3VO4 nanocomposites with tandem n–n heterojunctions as highly efficient visible-light-driven photocatalysts. RSC. Adv. 6, 2402–2413 (2016)CrossRefGoogle Scholar
  27. 27.
    S.G. Kumar, K.S.R.K. Rao, Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 391, 124–148 (2017)CrossRefGoogle Scholar
  28. 28.
    K.C. Christoforidis, T. Montini, E. Bontempi, S. Zafeiratos, J.J.D. Jaén, P. Fornasiero, Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites. Appl. Catal. B 187, 171–180 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Hu, R. Jin, G. Lu, D. Liu, J. Gui, The properties and photocatalytic performance comparison of Fe3+-doped g-C3N4 and Fe2O3/g-C3N4 composite catalysts. RSC Adv. 4, 24863–24869 (2014)CrossRefGoogle Scholar
  30. 30.
    K. Sridharan, T. Kuriakose, R. Philip, T.J. Park, Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts. Appl. Surf. Sci. 308, 139–147 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Kirchnerova, M.L. Herrera Cohen, C. Guy, D. Klvana, Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25). Appl. Catal. A 282, 321–332 (2005)CrossRefGoogle Scholar
  32. 32.
    H.P. Lin, C.C. Chen, W.W. Lee, Y.Y. Lai, J.Y. Chen, Y.Q. Chen, J.Y. Fu, Synthesis of SrFeO3 – x/g-C3N4 heterojunction with improved visible-light photocatalytic activities in chloramphenicol and crystal violet degradation. RSC. Adv. 6, 2323–2336 (2016)CrossRefGoogle Scholar
  33. 33.
    R.P. de Souza, F. Lima, A. Maria, P. Osvaldo, V.S. Santana, G.M. Luiz et al., Photodegradation of sugarcane vinasse: evaluation of the effect of vinasse pre-treatment and the crystalline phase of TiO2. Acta Sci. Technol. 38, 217–226 (2016)CrossRefGoogle Scholar
  34. 34.
    X. Jinghua, L. Qingquan, S. Xiong, D. Hongmin, G. Haoran, H. Yanqiang, CO2 methanation over TiO2-Al2O3 binary oxides supported Ru catalysts. Chin. J. Chem. Eng. 24, 140–145 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128–146 (2015)CrossRefGoogle Scholar
  36. 36.
    C.L. Marchena, L. Lerici, S. Renzini, L. Pierella, L. Pizzio, Synthesis and characterization of a novel tungstosilicic acid immobilized on zeolites catalyst for the photodegradation of methyl orange. Appl. Catal. B 188, 23–30 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Raizada, J. Kumari, R. Dhiman, V.P. Singh, P. Singh, Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin. Process Saf. Environ. Prot. 106, 104–116 (2017)CrossRefGoogle Scholar
  38. 38.
    J.M. Kwon, Y.H. Kim, B.K. Song, S.H. Yeom, B.S. Kim, J.B. Im, Novel immobilization of titanium dioxide (TiO2) on the fluidizing carrier and its application to the degradation of azo-dye. J. Hazard. Mater. 134, 230–236 (2006)CrossRefGoogle Scholar
  39. 39.
    S. Bagheri, N.M. Julkapli, Magnetite hybrid photocatalysis: advance environmental remediation. Rev. Inorg. Chem. 36, 135–151 (2016)CrossRefGoogle Scholar
  40. 40.
    Z.D. Li, H.L. Wang, X.N. Wei, X.Y. Liu, Y.F. Yang, W.F. Jiang, Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash. J. Alloys Compd. 659, 240–247 (2016)CrossRefGoogle Scholar
  41. 41.
    X. Cui, W. Zuo, M. Tian, Z. Dong, J. Ma, Highly efficient and recyclable Ni MOF-derived N-doped magnetic mesoporous carbon-supported palladium catalysts for the hydrodechlorination of chlorophenols. J. Mol. Catal. A 423, 386–392 (2016)CrossRefGoogle Scholar
  42. 42.
    M.B. Gawande, Y. Monga, R. Zboril, R.K. Sharma, Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 288, 118–143 (2015)CrossRefGoogle Scholar
  43. 43.
    Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram. Int. 42, 9–34 (2016)CrossRefGoogle Scholar
  44. 44.
    E. Casbeer, V.K. Sharma, X.Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep. Purif. Technol. 87, 1–14 (2012)CrossRefGoogle Scholar
  45. 45.
    N. Shah, F. Claessyns, S. Rimmer, A.M. Balal, T. Rehan, A. Wazwaz, A.M. Wasi, M. Ul-Islam, Effective role of magnetic core-shell nanocomposites in removing organic and inorganic wastes from water. Recent Pat. Nanotechnol. 10, 202–212 (2016)CrossRefGoogle Scholar
  46. 46.
    P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)CrossRefGoogle Scholar
  47. 47.
    R. Abazari, A.R. Mahjoub, S. Sanati, Magnetically recoverable Fe3O4-ZnO/AOT nanocomposites: synthesis of a core–shell structure via a novel and mild route for photocatalytic degradation of toxic dyes. J. Mol. Liq. 223, 1133–1142 (2016)CrossRefGoogle Scholar
  48. 48.
    Y. Chen, C. Tan, H. Zhang, L. Wang, Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 44, 2681–2701 (2015)CrossRefGoogle Scholar
  49. 49.
    M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Remediation of wastewater using various nano-materials. Arab. J. Chem. (2016). Google Scholar
  50. 50.
    Y. Zheng, J. Liu, J. Liang, M. Jaroniecc, S.Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Eng. Environ. Sci. 5, 6717–6731 (2012)Google Scholar
  51. 51.
    W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g‑C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)CrossRefGoogle Scholar
  52. 52.
    J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)CrossRefGoogle Scholar
  53. 53.
    W. Cui, J. Li, F. Dong, Y. Sun, G. Jiang, W. Cen, S.C. Lee, Z. Wu, Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride. Environ. Sci. Technol. 51, 10682–10690 (2017)CrossRefGoogle Scholar
  54. 54.
    W. Cui, J. Li, W. Cen, Y. Sun, S.C. Lee, F. Dong, Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: enhanced photocatalysis and reaction mechanism. J. Catal. 352, 351–360 (2017)CrossRefGoogle Scholar
  55. 55.
    W. Zhang, Z. Zhao, F. Dong, Y. Zhang, Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal. Chin. J. Catal. 38, 372–378 (2017)CrossRefGoogle Scholar
  56. 56.
    J. Li, W. Cui, Y. Sun, Y. Chu, W. Cen, F. Dong, Directional electrons delivery via vertical channel between g-C3N4 layers promoting the photocatalysis efficiency. J. Mater. Chem. A 19, 9358–9364 (2017)CrossRefGoogle Scholar
  57. 57.
    T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016)CrossRefGoogle Scholar
  58. 58.
    Z. Ni, F. Dong, H. Huang, Y. Zhang, New insights into how Pd nanoparticles influence the photocatalytic oxidation and reduction ability of g-C3N4 nanosheets. Catal. Sci. Technol. 6, 6448–6458 (2016)CrossRefGoogle Scholar
  59. 59.
    J. Liu, H. Wang, M. Antonietti, Graphitic carbon nitride ‘‘reloaded’’: emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 45, 2308–2326 (2016)CrossRefGoogle Scholar
  60. 60.
    Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54, 2–19 (2015)CrossRefGoogle Scholar
  61. 61.
    Y. Gong, M. Li, Y. Wang, Carbon nitride in energy conversion and storage: Recent advances and future prospects. ChemSusChem 8, 931–946 (2015)CrossRefGoogle Scholar
  62. 62.
    Y. Gong, M. Li, H. Li, Y. Wang, Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 17, 715–736 (2015)CrossRefGoogle Scholar
  63. 63.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015)CrossRefGoogle Scholar
  64. 64.
    G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014)CrossRefGoogle Scholar
  65. 65.
    J. Bian, C. Huang, R.Q. Zhang, Graphitic carbon nitride film: an emerging star for catalytic and optoelectronic applications. ChemSusChem 9, 1–14 (2016)CrossRefGoogle Scholar
  66. 66.
    W. Jiang, W. Luo, J. Wang, M. Zhang, Y. Zhu, Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. J. Photochem. Photobiol. C 28, 87–115 (2016)CrossRefGoogle Scholar
  67. 67.
    S. Patnaik, S. Martha, K.M. Parida, An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. RSC Adv. 6, 46929–46951 (2016)CrossRefGoogle Scholar
  68. 68.
    S. Patnaik, S. Martha, S. Acharya, K.M. Parida, An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications. Inorg. Chem. Front. 3, 336–347 (2016)CrossRefGoogle Scholar
  69. 69.
    S. Ye, R. Wang, M.-Zai Wu, Y.P. Yuan, A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 358, 15–27 (2015)CrossRefGoogle Scholar
  70. 70.
    L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade, S. Wang, W. Jin, Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 6, 7002–7023 (2016)CrossRefGoogle Scholar
  71. 71.
    J. Li, W. Zhao, Y. Guo, Z. Wei, M. Han, H. He, S. Yang, C. Sun, Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Appl. Surf. Sci. 351, 270–279 (2015)CrossRefGoogle Scholar
  72. 72.
    N. Liang, J. Zai, M. Xu, Q. Zhu, X. Wei, X. Qian, Novel Bi2S3/Bi2O2CO3 heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment. J. Mater. Chem. A 2, 4208–4216 (2014)CrossRefGoogle Scholar
  73. 73.
    A. Bandyopadhyay, D. Ghosh, N.M. Kaley, S.K. Pati, Photocatalytic activity of g-C3N4 quantum dots in visible light: effect of physico-chemical modifications. J. Phys. Chem. C 121, 1982–1989 (2017)CrossRefGoogle Scholar
  74. 74.
    X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, S. Yang, Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater. 26, 1719–1728 (2016)CrossRefGoogle Scholar
  75. 75.
    K. Zhu, Y. Du, J. Liu, X. Fan, Z. Duan, G. Song, A. Meng, Z. Li, Q. Li, Graphitic carbon nitride (g-C3N4) nanosheets/graphene composites: in situ synthesis and enhanced photocatalytic performance. J. Nanosci. Nanotechnol. 17, 2515–2519 (2017)CrossRefGoogle Scholar
  76. 76.
    S. Zhang, H. Gao, X. Liu, Y.S. Huang, X. Xu, N.S. Alharbi, T. Hayat, J.X. Li, Hybrid 0D-2D nanoheterostructures: in-situ growth of amorphous silver silicates dots on g-C3N4 nanosheets for full spectrum photocatalysis. ACS Appl. Mater. Interfaces 8, 35138–35149 (2016)CrossRefGoogle Scholar
  77. 77.
    R. Ye, H.B. Fang, Y.Z. Zheng, N. Li, Y. Wang, X. Tao, Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-scheme photocatalytic mechanism insight. ACS Appl. Mater. Interfaces 8, 13879–13889 (2016)CrossRefGoogle Scholar
  78. 78.
    I. Papailias, N. Todorova, T. Giannakopoulou, J. Yu, D. Dimotikali, C. Trapalis, Photocatalytic activity of modified g-C3N4/TiO2 nanocomposites for NOx removal. Catal. Today 280, 37–44 (2017)CrossRefGoogle Scholar
  79. 79.
    Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015)CrossRefGoogle Scholar
  80. 80.
    G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B 198, 347–377 (2016)CrossRefGoogle Scholar
  81. 81.
    J. Liu, S. Xie, Z. Geng, K. Huang, L. Fan, W. Zhou, L. Qiu, D. Gao, L. Ji, L. Duan, L. Lu, W. Li, S. Bai, Z. Liu, W. Chen, S. Feng, Y. Zhang, Carbon nitride supramolecular hybrid material enabled high-efficiency photocatalytic water treatments. Nano Lett. 16, 6568–6575 (2016)CrossRefGoogle Scholar
  82. 82.
    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 27, 4800–4809 (2016)CrossRefGoogle Scholar
  83. 83.
    S. Chi, C. Ji, S. Sun, H. Jiang, R. Qu, C. Sun, Magnetically separated meso-g‑C3N4/Fe3O4: bifuctional composites for removal of arsenite by simultaneous visible-light catalysis and adsorption. Ind. Eng. Chem. Res. 55, 12060–12067 (2016)CrossRefGoogle Scholar
  84. 84.
    Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, Atomically thin mesoporous nanomesh of Graphitic-C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10, 2745–2751 (2016)CrossRefGoogle Scholar
  85. 85.
    G. Xin, Y. Xia, Y. Lv, L. Liu, B. Yu, Investigation of mesoporous graphitic carbon nitride as the adsorbent to remove Ni (II) ions. Water Environ. Res. 88, 318–324 (2016)CrossRefGoogle Scholar
  86. 86.
    L. Shi, L. Liang, F. Wang, M. Liu, S. Zhong, J. Sun, Tetraethylorthosilicate induced preparation of mesoporous graphitic carbon nitride with improved visible light photocatalytic activity. Catal. Commun. 59, 131–135 (2015)CrossRefGoogle Scholar
  87. 87.
    S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B 186, 77–87 (2016)CrossRefGoogle Scholar
  88. 88.
    Y. Wang, Y. Wang, Y. Li, H. Shi, Y. Xu, H. Qin, X. Li, Y. Zuo, S. Kang, L. Cui, Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation. Catal. Commun. 72, 24–28 (2015)CrossRefGoogle Scholar
  89. 89.
    X. Ma, Y. Lv, J. Xu, Y. Liu, R. Zhang, Y. Zhu, A strategy of enhancing the photoactivity of g‑C3N4 via doping of nonmetal elements: a first-principles study. J. Phys. Chem. C 116, 23485–23493 (2012)CrossRefGoogle Scholar
  90. 90.
    Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and rhodamine B degradation under visible light. J. Mater. Chem. A 3, 3862–3867 (2015)CrossRefGoogle Scholar
  91. 91.
    R. Chen, J. Zhang, Y. Wang, X. Chen, J.A. Zapien, C.S. Lee, Graphitic carbon nitride nanosheet@metal organic framework core–shell nanoparticles for photo-chemo combination therapy. Nanoscale 7, 17299–17305 (2015)CrossRefGoogle Scholar
  92. 92.
    K. Dai, L. Lu, C. Liang, G. Zhu, Q. Liu, L. Geng, J. He, A high efficient graphitic-C3N4/BiOI/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material. Dalton Trans. 44, 7903–7910 (2015)CrossRefGoogle Scholar
  93. 93.
    J. Muñoz-Batista, M.A. Nasalevich, T.J. Savenije, F. Kapteijn, J. Gascon, A. Kubacka, M. Fern´andez-Garc´ıa, Enhancing promoting effects in g-C3N4-Men+/CeO2-TiO2 ternary composites: photo-handling of charge carriers. Appl. Catal. B 176, 687–698 (2015)CrossRefGoogle Scholar
  94. 94.
    H.T. Ren, S.Y. Jia, S.H. Wu, T.H. Zhang, X. Han, Phase transformation synthesis of novel Ag2O/Ag2CO3/g-C3N4 composite with enhanced photocatalytic activity. Mater. Lett. 142, 15–18 (2015)CrossRefGoogle Scholar
  95. 95.
    J. Li, E. Liu, Y. Ma, X. Hu, J. Wan, L. Sun, J. Fan, Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl. Surf. Sci. 364, 694–702 (2016)CrossRefGoogle Scholar
  96. 96.
    L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang, W. Cui, A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Appl. Catal. B 183, 133–141 (2016)CrossRefGoogle Scholar
  97. 97.
    S.M. Lam, J.C. Sin, A.R. Mohamed, A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater. Sci. Semicond. Process. 47, 62–84 (2016)CrossRefGoogle Scholar
  98. 98.
    Z. Zhu, Z. Lu, D. Wang, X. Tang, Y. Yan, W. Shi, Y. Wang, N. Gao, X. Yao, H. Dong, Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl. Catal. B 182, 115–122 (2016)CrossRefGoogle Scholar
  99. 99.
    S. Verma, R.B.N. Baig, C. Han, M.N. Nadagouda, R.S. Varma, Magnetic graphitic carbon nitride: application in C-H activation of amines. Chem. Commun. 51, 15554–15557 (2015)CrossRefGoogle Scholar
  100. 100.
    P.A.K. Reddy, B. Srinivas, V.D. Kumari, M.V. Shankar, M. Subrahmanyam, J.S. Lee, CaFe2O4 sensitized hierarchical TiO2 photo composite for hydrogen production under solar light irradiation. Chem. Eng. J. 247, 152–160 (2014)CrossRefGoogle Scholar
  101. 101.
    S.M. Moosavi, P. Molla-Abbasi, Z. Haji-Aghajani, Photo-catalyst CoFe2O4–TiO2: application in photo-degradation of organic dyes and magnetic nanocomposite preparation. J. Mater. Sci. Mater. Electron. 27, 4879–4886 (2016)CrossRefGoogle Scholar
  102. 102.
    A. Elhampour, F. Nemati, Nano-Fe3O4@TiO2/Cu2O core-shell composite: a convenient magnetic separable catalyst for A3 and KA2 coupling. J. Chin. Chem. Soc. 63, 653–659 (2016)CrossRefGoogle Scholar
  103. 103.
    Y. Zhu, J. Xue, T. Xu, G. He, H. Chen, Enhanced photocatalytic activity of magnetic core–shell Fe3O4@Bi2O3–RGO heterojunctions for quinolone antibiotics degradation under visible light. J. Mater. Sci. Mater. Electron. 28, 1–10 (2017)Google Scholar
  104. 104.
    M.T. Qamar, M. Aslam, I.M.I. Ismail, N. Salah, A. Hameed, The assessment of the photocatalytic activity of magnetically retrievable ZnO coated γ-Fe2O3 in sunlight exposure. Chem. Eng. J. 283, 656–667 (2016)CrossRefGoogle Scholar
  105. 105.
    S.D. Kulkarni, S. Kumbar, S.G. Menon, K.S. Choudhari, C. Santhosh, Magnetically separable core-shell ZnFe2O4@ZnO nanoparticles for visible light photodegradation of methyl orange. Mater. Res. Bull. 77, 70–77 (2016)CrossRefGoogle Scholar
  106. 106.
    C. Lu, Z. Bao, C. Qin, L. Dai, A. Zhu, Facile fabrication of heterostructured cubic-CuFe2O4/ZnO nanofibers (c-CFZs) with enhanced visible-light photocatalytic activity and magnetic separation. RSC Adv. 6, 110155–110163 (2016)CrossRefGoogle Scholar
  107. 107.
    L. Wang, E. Panaitescu, F. Tasnim, E. Fontana, L. Menon, Iron oxide decorated titania nanotubes for solar energy harvesting applications. J. Nanosci. Nanotechnol. 17, 2079–2085 (2017)CrossRefGoogle Scholar
  108. 108.
    X. Liu, A. Jin, Y. Jia, J. Jiang, N. Hu, X. Chen, Facile synthesis and enhanced visible-light photocatalytic activity of graphitic carbon nitride decorated with ultrafine Fe2O3 nanoparticles. RSC Adv. 5, 92033–92041 (2015)CrossRefGoogle Scholar
  109. 109.
    A. Mirzaei, B. Hashemi, K. Janghorban, α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci. Mater. Electron. 27, 3109–3144 (2016)CrossRefGoogle Scholar
  110. 110.
    L. Ma, H. Ma, N. Gao, J. Wang, X. Zhang, Controllable synthesis of α-Fe2O3 nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with NH3. J. Mater. Sci. 51, 1959–1965 (2016)CrossRefGoogle Scholar
  111. 111.
    M.C.S.M. Lage, L.C.D. Cavalcante, G. Klingelhӧfer, J.D. Fabris, In-situ Fe mӧssbauer characterization of iron oxides in pigments of a rupestrian painting from the Serra da capivara national park, in Brazil, with the backscattering Mӧssbauer spectrometer MIMOS II. Hyperfine Interact. 237, 1–7 (2016)Google Scholar
  112. 112.
    D. Xiao, K. Dai, Y. Qu, Y. Yin, H. Chen, Hydrothermal synthesis of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic reduction of Cr(VI) under visible light. Appl. Surf. Sci. 358, 181–187 (2015)CrossRefGoogle Scholar
  113. 113.
    J. Theerthagiri, R.A. Senthil, A. Priya, J. Madhavan, R.J.V. Michael, M. Ashokkumar, Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3-g-C3N4 nanocomposites. RSC Adv. 4, 38222–38229 (2014)CrossRefGoogle Scholar
  114. 114.
    R.C. Pawar, Y. Pyo, S.H. Ahn, C.S. Lee, Photoelectrochemical properties and photodegradation of organic pollutants using hematite hybrids modified by gold nanoparticles and graphitic carbon nitride. Appl. Catal. B 176, 654–666 (2015)CrossRefGoogle Scholar
  115. 115.
    M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Maĉedo, M. Nakamura, H.E. Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210–217 (2004)CrossRefGoogle Scholar
  116. 116.
    S.Q. Liu, Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ. Chem. Lett. 10, 209–216 (2012)CrossRefGoogle Scholar
  117. 117.
    A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)CrossRefGoogle Scholar
  118. 118.
    Y.F. Lin, C.Y. Chang, Magnetic mesoporous iron oxide/carbon aerogel photocatalysts with adsorption ability for organic dye removal. RSC Adv. 4, 28628–28631 (2014)CrossRefGoogle Scholar
  119. 119.
    J. Wang, C. Li, J. Cong, Z. Liu, H. Zhang, M. Liang, J. Gao, S. Wang, J. Yao, Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance. J. Solid State Chem. 238, 246–251 (2016)CrossRefGoogle Scholar
  120. 120.
    S. Ye, L.G. Qiu, Y.P. Yuan, Y.J. Zhu, J. Xia, J.F. Zhu, Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light. J. Math. Chem. A 1, 3008–3015 (2013)CrossRefGoogle Scholar
  121. 121.
    Y. Xu, S. Huang, M. Xie, Y. Li, H. Xu, L. Huang, Q. Zhang, H. Li, Magnetically separable Fe2O3/g-C3N4 catalyst with enhanced photocatalytic activity. RSC Adv. 5, 95727–95735 (2015)CrossRefGoogle Scholar
  122. 122.
    A.M. Gutierrez, T.D. Dziubla, J.Z. Hilt, Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev. Environ. Health 32, 111–117 (2017)CrossRefGoogle Scholar
  123. 123.
    Y. Li, Q. Li, Y. Fu, M. Hao, W. Wang, H. Zou, L. Zhang, M. Tian, A novel method for the preparation of conductive and magnetic Fe3O4@Ag hybrid nanoparticles. J. Nanosci. Nanotechnol. 16, 8431–8438 (2016)CrossRefGoogle Scholar
  124. 124.
    A. Pourjavadi, M. Doroudian, Z.A. Saveh, M. Doulabi, Synthesis of new electromagnetic nanocomposite based on modified Fe3O4 nanoparticles with enhanced magnetic, conductive and catalytic properties. Int. J. Polym. Mater. Polym. Biomater. 65, 384–390 (2016)CrossRefGoogle Scholar
  125. 125.
    L. Su, X. Wu, L. Zheng, T. Zheng, J. Hei, L. Wang, Y. Wang, M. Ren, Excellent lithium storage materials consisting of highly distributed Fe3O4 quantum dots on commercially available graphite nanoplates. Part. Part. Syst. Charact. 33, 597–601 (2016)CrossRefGoogle Scholar
  126. 126.
    X. Ma, L. Huang, F. Wu, S. Xiong, B. Xi, Formation of C@Fe3O4@C hollow sandwiched structures with enhanced lithium-storage properties. Eur. J. Inorg. Chem. 2016, 3722–3727 (2016)CrossRefGoogle Scholar
  127. 127.
    T. Chen, T. Huang, H. Dai, Synthesis of light-controlled superparamagnetic core–shell structured nanocomposite for drug delivery. J. Nanosci. Nanotechnol. 17, 4524–4531 (2017)CrossRefGoogle Scholar
  128. 128.
    X. Huang, X. Zheng, C. Yi, S. Yin, P(BA-co-HBA) coated Fe3O4@ZnO nanoparticles as photo-responsive multifunctional drug delivery systems for safer cancer therapy. Nano 11, 1650057–1650065 (2016)CrossRefGoogle Scholar
  129. 129.
    Z. Zhu, Z. Lu, X. Zhao, Y. Yan, W. Shi, D. Wang, L. Yang, X. Lin, Z. Hua, Y. Liu, Surface imprinting of g-C3N4 photocatalyst for enhanced photocatalytic activity and selectivity on photodegradation of 2-mercaptobenzothiazole. RSC Adv. 5, 40726–40736 (2015)CrossRefGoogle Scholar
  130. 130.
    X. Zhou, B. Jin, R. Chen, F. Peng, Y. Fang, Synthesis of porous Fe3O4/g-C3N4 nanospheres as highly efficient and recyclable photocatalysts. Mater. Res. Bull. 48, 1447–1452 (2013)CrossRefGoogle Scholar
  131. 131.
    S. Kumar, S.T.B. Kumar, A. Baruah, V. Shanke, Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C 117, 26135–26143 (2013)CrossRefGoogle Scholar
  132. 132.
    C.G. Liu, X.T. Wu, X.F. Li, X.G. Zhang, Synthesis of graphene-like g-C3N4/Fe3O4 nanocomposites with high photocatalytic activity and applications in drug delivery. RSC Adv. 4, 62492–62498 (2014)CrossRefGoogle Scholar
  133. 133.
    J. Yang, H. Chen, J. Gao, T. Yan, F. Zhou, S. Cui, W. Bi, Synthesis of Fe3O4/g-C3N4 nanocomposites and their application in the photodegradation of 2,4,6-trichlorophenol under visible light. Mater. Lett. 164, 183–189 (2016)CrossRefGoogle Scholar
  134. 134.
    X. Jia, R. Dai, Y. Sun, H. Song, X. Wu, One-step hydrothermal synthesis of Fe3O4/g-C3N4 nanocomposites with improved photocatalytic activities. J. Mater. Sci. Mater. Electron. 27, 3791–3798 (2016)CrossRefGoogle Scholar
  135. 135.
    M. Mousavi, A. Habibi-Yangjeh, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride. J. Colloid Interface Sci. 465, 83–92 (2016)CrossRefGoogle Scholar
  136. 136.
    A. Habibi-Yangjeh, A. Akhundi, Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. J. Mol. Catal. A 415, 122–130 (2016)CrossRefGoogle Scholar
  137. 137.
    M. Mousavi, A. Habibi-Yangjeh, Ternary g-C3N4/Fe3O4/Ag3VO4 nanocomposites: novel magnetically separable visible-light- driven photocatalysts for efficiently degradation of dye pollutants. Mater. Chem. Phys. 163, 421–430 (2015)CrossRefGoogle Scholar
  138. 138.
    A. Akhundi, A. Habibi-Yangjeh, Ternary magnetic g-C3N4/Fe3O4/AgI nanocomposites: novel recyclable photocatalysts with enhance d activity in degradation of different pollutants under visible light. Mater. Chem. Phys. 174, 59–69 (2016)CrossRefGoogle Scholar
  139. 139.
    A. Akhundi, A. Habibi-Yangjeh, Novel magnetically separable g-C3N4/AgBr/Fe3O4 nanocomposites as visible-light-driven photocatalysts with highly enhanced activities. Ceram. Int. 41, 5634–5643 (2015)CrossRefGoogle Scholar
  140. 140.
    A. Akhundi, A. Habibi-Yangjeh, Novel magnetic g-C3N4/Fe3O4/AgCl nanocomposites: facile and large-scale preparation and highly efficient photocatalytic activities under visible-light irradiation. Mater. Sci. Semicond. Process. 39, 162–171 (2015)CrossRefGoogle Scholar
  141. 141.
    A. Akhundi, A. Habibi-Yangjeh, High performance magnetically recoverable g-C3N4/Fe3O4/Ag/Ag2SO3 plasmonic photocatalyst for enhanced photocatalytic degradation of water pollutants. Adv. Powder Technol. 28, 565–574 (2017)CrossRefGoogle Scholar
  142. 142.
    M. Mousavi, A. Habibi-Yangjeh, Novel magnetically separable g-C3N4/Fe3O4/Ag3VO4/Ag2CrO4 nanocomposites as efficient visible-light-driven photocatalysts for degradation of water pollutants. J. Mater. Sci. Mater. Electron. 27, 8532–8545 (2016)CrossRefGoogle Scholar
  143. 143.
    A. Akhundi, A. Habibi-Yangjeh, Codeposition of AgI and Ag2CrO4 on g-C3N4/Fe3O4 nanocomposite: novel magnetically separable visible-light-driven photocatalysts with enhanced activity. Adv. Powder Technol. 27, 2496–2506 (2016)CrossRefGoogle Scholar
  144. 144.
    A. Akhundi, A. Habibi-Yangjeh, Facile preparation of novel quaternary g-C3N4/Fe3O4/AgI/Bi2S3 nanocomposites: magnetically separable visible-light-driven photocatalysts with significantly enhanced activity. RSC Adv. 6, 106572–106583 (2016)CrossRefGoogle Scholar
  145. 145.
    M. Mousavi, A. Habibi-Yangjeh, Novel magnetically separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: visible-light-driven photocatalysts with highly enhanced activity. Adv. Powder Technol. (2017). Google Scholar
  146. 146.
    M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J. Colloid Interface Sci. 480, 218–231 (2016)CrossRefGoogle Scholar
  147. 147.
    S. Yin, J. Han, T. Zhou, R. Xu, Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal. Sci. Technol. 5, 5048–5061 (2015)CrossRefGoogle Scholar
  148. 148.
    S. Wang, J.H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, Recent progress on visible light responsive heterojunctions for photocatalytic applications. Mater. Sci. Technol. 33, 1–22 (2017)CrossRefGoogle Scholar
  149. 149.
    C. Li, Y. Xu, W. Tu, G. Chen, R. Xu, Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chem. 19, 882–899 (2017)CrossRefGoogle Scholar
  150. 150.
    S. Chang, X. Yang, Y. Sang, H. Liu, Highly efficient photocatalysts and continuous-flow photocatalytic reactors for degradation of organic pollutants in wastewater. Chemistry 11, 2352–2371 (2016)Google Scholar
  151. 151.
    R.K. Nath, M.F.M. Zain, M. Jamil, An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: a review. Renew. Sustain. Energy Rev. 62, 1184–1194 (2016)CrossRefGoogle Scholar
  152. 152.
    E.D. Sherly, J.J. Vijaya, L.J. Kennedy, A. Meenakshisundaram, M. Lavanya, A comparative study of the effects of CuO, NiO, ZrO2 and CeO2 coupling on the photocatalytic activity and characteristics of ZnO. Korean J. Chem. Eng. 33, 1431–1440 (2016)CrossRefGoogle Scholar
  153. 153.
    J. Xu, F. Teng, Y. Zhao, Y. Kan, L. Yang, Y. Yang, W. Yao, Y. Zhu, Understanding the contribution of hydroxyl to the energy band of a semiconductor: Bi2O(OH)2SO4 vs. Bi6S2O15. Dalton Trans. 45, 6866–6877 (2016)CrossRefGoogle Scholar
  154. 154.
    S.P. Kim, M.Y. Choi, H.C. Choi, Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater. Res. Bull. 74, 85–89 (2016)CrossRefGoogle Scholar
  155. 155.
    S.Z. Wu, K. Li, W.D. Zhang, On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 324, 324–333 (2015)CrossRefGoogle Scholar
  156. 156.
    H. Katsumata, T. Hayashi, M. Taniguchi, T. Suzuki, S. Kaneco, Highly efficient visible-light driven AgBr/Ag3PO4 hybrid photocatalysts with enhanced photocatalytic activity. Mater. Sci. Semicond. Process. 25, 68–75 (2014)CrossRefGoogle Scholar
  157. 157.
    A. Sengupta, R.R. Rao, D. Bahadur, Zn–silica modified cobalt ferrite magnetic nanostructured composite for efficient adsorption of cationic pollutants from water. ACS Sustain. Chem. Eng. 5, 1280–1286 (2017)CrossRefGoogle Scholar
  158. 158.
    P. Chen, B. Cui, X. Cui, W. Zhao, Y. Bu, Y. Wang, A microwave-triggered controllable drug delivery system based on hollow-mesoporous cobalt ferrite magnetic nanoparticles. J. Alloys Compd. 699, 526–533 (2017)CrossRefGoogle Scholar
  159. 159.
    Y. Yao, G. Wu, F. Lu, S. Wang, Y. Hu, J. Zhang, W. Huang, F. Wei, Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 heterostructures under natural indoor light. Environ. Sci. Pollut. Res. 23, 21833–21845 (2016)CrossRefGoogle Scholar
  160. 160.
    S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf. A 478, 71–80 (2015)CrossRefGoogle Scholar
  161. 161.
    W. Ma, L. Chen, J. Dai, C. Li, Y. Yan, Magnetical Co0.5Zn0.5Fe2O4 nanoparticles modified polymeric g-C3N4 sheets with enhanced photocatalysis performance for chloromycetin degradation. RSC Adv. 6, 48875–48883 (2016)CrossRefGoogle Scholar
  162. 162.
    X. Xu, W. Song, Synthesis and photocatalytic activity of heterojunction ZnFe2O4–BiVO4. Mater. Technol. 32, 1–8 (2017)CrossRefGoogle Scholar
  163. 163.
    G. Song, X. Wu, F. Xin, X. Yin, Synthesis of different shapes ZnFe2O4–BiOCl nanocomposites for photocatalytic reduction of CO2 in cyclohexanol. J. Nanosci. Nanotechnol. 17, 2438–2446 (2017)CrossRefGoogle Scholar
  164. 164.
    L. Chen, W. Ma, J. Dai, J. Zhao, C. Li, Y. Yan, Facile synthesis of highly efficient graphitic-C3N4/ZnFe2O4 heterostructures enhanced visible-light photocatalysis for spiramycin degradation. J. Photochem. Photobiol. A 328, 24–32 (2016)CrossRefGoogle Scholar
  165. 165.
    Y. Yao, Y. Cai, F. Lu, J. Qin, F. Wei, C. Xu, S. Wang, Magnetic ZnFe2O4–C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind. Eng. Chem. Res. 53, 17294–17302 (2014)CrossRefGoogle Scholar
  166. 166.
    S. Zhang, J. Li, M. Zeng, G. Zhao, J. Xu, W. Hu, X. Wang, In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl. Mater. Interfaces 5, 12735–12743 (2013)CrossRefGoogle Scholar
  167. 167.
    S. Anandan, T. Selvamani, G.G. Prasad, A.M. Asiri, J.J. Wu, Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 432, 437–443 (2017)CrossRefGoogle Scholar
  168. 168.
    G.H. Le, Q.T. Ngo, T.T. Nguyen, Q.K. Nguyen, T.T.T. Quan, T.A. Vu, Highly photocatalytic activity of novel CuFe2O4/GO nanocomposite in the degradation of phenol from aqueous solution. Phys. Chem. 7, 8–16 (2017)Google Scholar
  169. 169.
    Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, Magnetic core–shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II. J. Hazard. Mater. 297, 224–233 (2015)CrossRefGoogle Scholar
  170. 170.
    J.Y. Shen, Z.S. Cui, Z.W. Wu, J.X. Wang, Q. Ning, X.M. Lu, Simple preparation of CuFe2O4/C3N4 composites: characterization and enhanced photocatalysis. Mater. Res. Innovations 19, 187–191 (2015)CrossRefGoogle Scholar
  171. 171.
    K. Vignesh, A. Suganthi, B.K. Min, M. Kang, Photocatalytic activity of magnetically recoverable MnFe2O4/g-C3N4/TiO2 nanocomposite under simulated solar light irradiation. J. Mol. Catal. A 395, 373–383 (2014)CrossRefGoogle Scholar
  172. 172.
    H. Ji, X. Jing, Y. Xu, J. Yan, H. Li, Y. Li, L. Huang, Q. Zhang, H. Xu, H. Li, Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity. RSC Adv. 5, 57960–57967 (2015)CrossRefGoogle Scholar
  173. 173.
    B. Szczepanik, Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: a review. Appl. Clay Sci. 141, 227–239 (2017)CrossRefGoogle Scholar
  174. 174.
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)CrossRefGoogle Scholar
  175. 175.
    O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, C.A. Grimes, Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators 81, 32–41 (2001)CrossRefGoogle Scholar
  176. 176.
    C.M. Subramaniyam, K.A. Deshmukh, Z. Tai, N. Mahmood, A.D. Deshmukh, J.B. Goodenough, S.X. Dou, H.K. Liu, 2D layered graphitic carbon nitride sandwiched with reduced graphene oxide as nanoarchitectured anode for highly stable lithium-ion battery. Electrochim. Acta 237, 69–77 (2017)CrossRefGoogle Scholar
  177. 177.
    A.J. Alpert, O. Hudecz, K. Mechtler, Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion–hydrophilic interaction chromatography. Anal. Chem. 87, 4704–4711 (2015)CrossRefGoogle Scholar
  178. 178.
    A. Speltini, M. Sturini, F. Maraschi, A. Profumo, Recent trends in the application of the newest carbonaceous materials for magnetic solid-phase extraction of environmental pollutants. Trends Environ. Anal. Chem. 10, 11–23 (2016)CrossRefGoogle Scholar
  179. 179.
    K.C. Christoforidis, P. Fornasiero, Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem (2017). Google Scholar
  180. 180.
    M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K.Q. Zhang, Y. Lai, Z. Lin, A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrogen Energy (2017). Google Scholar
  181. 181.
    J. Chen, D. Zhao, Z. Diao, M. Wang, S. Shen, Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni)Fe2O4 modification. Sci. Bull. 61, 292–301 (2016)CrossRefGoogle Scholar
  182. 182.
    Y. Liu, F.Y. Su, Y.X. Yu, W.D. Zhang, Nano g-C3N4 modified Ti-Fe2O3 vertically arrays for efficient photoelectrochemical generation of hydrogen under visible light. Int. J. Hydrogen Energy 41, 7270–7279 (2016)CrossRefGoogle Scholar
  183. 183.
    R. Cheng, X. Fan, M. Wang, M. Li, J. Tian, L. Zhang, Facile construction of CuFe2O4/g-C3N4 photocatalyst for enhanced visible-light hydrogen evolution. RSC Adv. 6, 18990–18995 (2016)CrossRefGoogle Scholar
  184. 184.
    M. Wang, H. Yuan, W. Deng, W. Bi, X. Yang, A Taiji-principle-designed magnetic porous C-doped graphitic carbon nitride for environment-friendly solid phase extraction of pollutants from water samples. J. Chromatogr. A 1412, 12–21 (2015)CrossRefGoogle Scholar
  185. 185.
    S. Fan, J. Zhu, L. Ren, M. Wang, W. Bi, H. Li, X. Huang, D.D.Y. Chen, Co-solvent enhanced adsorption with magnetic velvet-like carbon nitride for high efficiency solid phase extraction. Anal. Chim. Acta 960, 63–71 (2017)CrossRefGoogle Scholar
  186. 186.
    N. Xua, Y. Wang, M. Rong, Z. Ye, Z. Deng, X. Chen, Facile preparation and applications of graphitic carbon nitride coatingin solid-phase microextraction. J. Chromatogr. A 1364, 53–58 (2014)CrossRefGoogle Scholar
  187. 187.
    N. Zhang, J. Gao, C. Huang, W. Liu, P. Tong, L. Zhang, In situ hydrothermal growth of ZnO/g-C3N4 nanoflowers coated solid-phase microextraction fibers coupled with GC-MS for determination of pesticides residues. Anal. Chim. Acta 934 122–131 (2016)CrossRefGoogle Scholar
  188. 188.
    M. Rajabi, A.G. Moghadam, B. Barfi, A. Asghari, Air-assisted dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons using a magnetic graphitic carbon nitride nanocomposite. Microchim. Acta 183, 1449–1458 (2016)CrossRefGoogle Scholar
  189. 189.
    M. Wang, Y. Xiaodi, B. Wentao, Application of magnetic graphitic carbon nitride nanocomposites for the solid-phase extraction of phthalate esters in water samples. J. Sep. Sci. 38, 445–452 (2015)CrossRefGoogle Scholar
  190. 190.
    J. Yang, L. Si, S. Cui, W. Bi, Synthesis of a graphitic carbon nitride nanocomposite with magnetite as a sorbent for solid phase extraction of phenolic acids. Microchim. Acta 182, 737–744 (2015)CrossRefGoogle Scholar
  191. 191.
    M. Wang, S. Cui, X. Yang, W. Bi, Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples. Talanta 132, 922–928 (2015)CrossRefGoogle Scholar
  192. 192.
    L. Li, J. Qin, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, P. Yang, Ni(OH)2 nanosheets grown on porous hybrid g-C3N4/RGO network as high performance supercapacitor electrode. Sci. Rep. 7, 43413–43423 (2017)CrossRefGoogle Scholar
  193. 193.
    L. Liu, J. Wang, C. Wang, G. Wang, Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3 composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications. Appl. Surf. Sci. 390, 303–310 (2016)CrossRefGoogle Scholar
  194. 194.
    L. Xu, J. Xia, H. Xu, S. Yin, K. Wang, L. Huang, L. Wang, H. Li, Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized a-Fe2O3 hollow microspheres with enhanced supercapacitive performance. J. Power Sources 245, 866–874 (2014)CrossRefGoogle Scholar
  195. 195.
    A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)CrossRefGoogle Scholar
  196. 196.
    E. Comini, Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 568, 28–40 (2006)CrossRefGoogle Scholar
  197. 197.
    B. Zeng, L. Zhang, X. Wan, H. Song, Y. Lv, Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sens. Actuators B 211, 370–376 (2015)CrossRefGoogle Scholar
  198. 198.
    Y. Zhang, D. Zhang, W. Guo, S. Chen, The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J. Alloys Compd. 685, 84–90 (2016)CrossRefGoogle Scholar
  199. 199.
    M.S.A.S. Shah, A.R. Park, A. Rauf, S.H. Hong, Y. Choi, J. Park, J. Kim, W.J. Kim, P.J. Yoo, Highly interdigitated and porous architected ternary composite of SnS2, g-C3N4, and reduced graphene oxide (rGO) as high performance lithium ion battery anodes. RSC Adv. 7, 3125–3135 (2017)CrossRefGoogle Scholar
  200. 200.
    Y. Liu, Y.X. Yu, W.D. Zhang, Photoelectrochemical study on charge transfer properties of nanostructured Fe2O3 modified by g-C3N4. Int. J. Hydrogen Energy 39, 9105–9113 (2014)CrossRefGoogle Scholar
  201. 201.
    G. Liu, X. Yang, T. Li, Y. She, S. Wang, J. Wang, M. Zhang, F. Jin, M. Jin, H. Shao, M. Shi, Preparation of a magnetic molecularly imprinted polymer using g-C3N4–Fe3O4 for atrazine adsorption. Mater. Lett. 160, 472–475 (2015)CrossRefGoogle Scholar
  202. 202.
    G.T. Zhu, X.M. He, X. Chen, D. Hussain, J. Ding, Y.Q. Feng, Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. J. Chromatogr. A 1437, 137–144 (2016)CrossRefGoogle Scholar
  203. 203.
    M. Shi, T. Wu, X. Song, J. Liu, L. Zhao, P. Zhang, L. Gao, Active Fe2O3 nanoparticles encapsulated in porous g-C3N4/graphene sandwich-type nanosheets as superior anode for high-performance lithium-ion batteries. J. Mater. Chem. A 4, 10666–10672 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of Mohaghegh ArdabiliArdabilIran
  2. 2.Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations