Skip to main content
Log in

Gallium and indium co-doped ZnO as a transparent conducting oxide for Cu2SnS3 photodetectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga and In co-doped ZnO (GIZO) thin films were grown by pulsed laser deposition for use as a transparent conducting oxide (TCO) in Cu2SnS3 (CTS) based photodetectors. The structural and optical properties were studied. The GIZO thin films were found exhibiting low resistivity of less than 10−3 Ω cm, and a high transparency of 97% both in visible and IR region. The performances of CTS photodetector with GIZO and with ZnO buffer assisted GIZO (ZnO/GIZO) as TCO layers were compared. The CTS photodetector with ZnO/GIZO as TCO was found to be exhibiting a higher photoresponse with responsivity, external quantum efficiency and specific detectivity of 552.3 A W−1, 1247.3% and 3.9 × 1012 Jones respectively. ZnO/GIZO could serve as an effective replacement for the commonly used TCO, indium tin oxide, which is expensive and non-earth abundant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Makoto, K. Takashi, N. Takashi, N. Hiroyoshi, Jpn. J. Appl. Phys. 55, 03DC06 (2016)

    Article  Google Scholar 

  2. J.-W. Park, G.-H. Lee, Y.Y. Kwon, K.-W. Park, J. Lee, Y.W. Jin, Y.-C. Nah, H. Kim, Org. Electron. 15, 2178–2183 (2014)

    Article  Google Scholar 

  3. S. Calnan, A.N. Tiwari, Thin Solid Films 518, 1839–1849 (2010)

    Article  Google Scholar 

  4. O.K. Varghese, M. Paulose, C.A. Grimes, Nat. Nano 4, 592–597 (2009)

    Article  Google Scholar 

  5. Y. Leterrier, L. Médico, F. Demarco, J.A.E. Månson, U. Betz, M.F. Escolà, M. Kharrazi Olsson, F. Atamny, Thin Solid Films 460, 156–166 (2004)

    Article  Google Scholar 

  6. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Superlattices Microstruct. 48, 458–484 (2010)

    Article  Google Scholar 

  7. E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita, E. Manea, Thin Solid Films 516(7), 1629–1633 (2008)

    Article  Google Scholar 

  8. H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999)

    Article  Google Scholar 

  9. T. Margalith, O. Buchinsky, D.A. Cohen, A.C. Abare, M. Hansen, S.P. Den Baars, L.A. Coldren, Appl. Phys. Lett. 74, 3930–3932 (1999)

    Article  Google Scholar 

  10. G. Phipps, C. Mikolajczak, T. Guckes, Renew. Energy Focus 9, 56–59 (2008)

    Article  Google Scholar 

  11. S.M. Hatch, J. Briscoe, S. Dunn, Adv. Mater. 25, 867–871 (2013)

    Article  Google Scholar 

  12. D.P. Pham, H.T. Nguyen, B.T. Phan, T.M.D. Cao, V.D. Hoang, V.A. Dao, J. Yi, C.V. Tran, Adv. Condens. Matter Phys. 7, 2014 (2014)

    Google Scholar 

  13. T. Minami, T. Miyata, Thin Solid Films 517, 1474–1477 (2008)

    Article  Google Scholar 

  14. A. Muthukumar, G. Rey, G. Giusti, V. Consonni, E. Appert, H. Roussel, A. Dakshnamoorthy, D. Bellet, AIP Conf. Proc. 1512(1), 710–711 (2013)

    Article  Google Scholar 

  15. K. Jung, W.-K. Choi, S.-J. Yoon, H.J. Kim, J.-W. Choi, Ceram. Int. 38(Supplement 1), S605–S608 (2012)

    Google Scholar 

  16. D.B. Buchholz, Q. Ma, D. Alducin, A. Ponce, M. Jose-Yacaman, R. Khanal, J.E. Medvedeva, R.P.H. Chang, Chem. Mater. 26, 5401–5411 (2014)

    Article  Google Scholar 

  17. S. Chirakkara, S.B. Krupanidhi, Phys. Status Solidi RRL 6(1), 34–36 (2012)

    Article  Google Scholar 

  18. J. Li, C. Xue, Y. Wang, G. Jiang, W. Liu, C. Zhu, Sol. Energy Mater. Sol. Cells 144, 281–288 (2016)

    Article  Google Scholar 

  19. K. Ellmer, Nat. Photon. 6(12), 809–817 (2012)

    Article  Google Scholar 

  20. S. Dias, S.B. Krupanidhi, AIP Adv. 6, 025217 (2016)

    Article  Google Scholar 

  21. S. Dias, S.B. Krupanidhi, Mater. Res. Soc. Symp. Proc. 1784, (2015). doi:10.1557/opl.2015.4

  22. S. Dias, S.B. Krupanidhi, J. Nanosci. Nanotechnol. 17(1), 413 (2017)

    Article  Google Scholar 

  23. S. Dias, K.L. Kumawat, S. Biswas, S.B. Krupanidhi, RSC Adv. 7, 23301–23308 (2017)

    Article  Google Scholar 

  24. S. Dias, K. Kumawat, S. Biswas, S.B. Krupanidhi, Inorg. Chem. 56(4), 2198 (2017)

    Article  Google Scholar 

  25. S. Chirakkara, S.B. Krupanidhi, Thin Solid Films 520(18), 5894–5899 (2012)

    Article  Google Scholar 

  26. S. Chirakkara, S.B. Krupanidhi, J. Lumin. 131(8), 1649–1654 (2011)

    Article  Google Scholar 

  27. S. Chirakkara, K.K. Nanda, S.B. Krupanidhi, Thin Solid Films 519(11), 3647–3652 (2011)

    Article  Google Scholar 

  28. S. Liang, X. Bi, J. Appl. Phys. 104(11), 113533 (2008)

    Article  Google Scholar 

  29. S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Appl. Surf. Sci. 258(24), 9969–9976 (2012)

    Article  Google Scholar 

  30. S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Phys. D 41(10), 105109 (2008)

    Article  Google Scholar 

  31. S.K. Tripathi, M. Sharma, J. Appl. Phys. 111, 074513 (2012)

    Article  Google Scholar 

  32. F. Yakuphanoglu, Sol. Energy 85, 2518–2523 (2011)

    Article  Google Scholar 

  33. T.P. Dhakal, C.Y. Peng, R.R. Tobias, R. Dasharathy, C.R. Westgate, Sol. Energy 100, 23–30 (2014)

    Article  Google Scholar 

  34. L.L. Baranowski, K. McLaughlin, P. Zawadzki, S. Lany, A. Norman, H. Hempel, R. Eichberger, T. Unold, E.S. Toberer, A. Zakutayev, Phys. Rev. Appl. 4, 044017 (2015)

    Article  Google Scholar 

  35. W. Peng, L. Wang, B. Murali, K.-T. Ho, A. Bera, N. Cho, C.-F. Kang, V.M. Burlakov, J. Pan, L. Sinatra, C. Ma, W. Xu, D. Shi, E. Alarousu, A. Goriely, J.-H. He, O.F. Mohammed, T. Wu, O.M. Bakr, Adv. Mater. 28, 3383–3390 (2016)

    Article  Google Scholar 

  36. T. Ueda, Z.H. An, K. Hirakawa, S. Komiyama, J. Appl. Phys. 103, 093109 (2008)

    Article  Google Scholar 

  37. X.P. Chen, H.L. Zhu, J.F. Cai, Z.Y. Wu, J. Appl. Phys. 102, 024505 (2007)

    Article  Google Scholar 

  38. T. Xie, G. Liu, B. Wen, J.Y. Ha, N.V. Nguyen, A. Motayed, R. Debnath, ACS Appl. Mater. Interfaces 7(18), 9660–9667 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Dias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, S., Chirakkara, S., Patel, N. et al. Gallium and indium co-doped ZnO as a transparent conducting oxide for Cu2SnS3 photodetectors. J Mater Sci: Mater Electron 29, 2131–2139 (2018). https://doi.org/10.1007/s10854-017-8125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8125-6

Navigation