Skip to main content

Advertisement

Log in

All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen-doped activated carbon (PNAC) have been successfully synthesized using carbonized polyvinylidene fluoride as carbon precursor via HNO3-activation and subsequent urea-assisted hydrothermal nitrogen-doping method. As a result, the PNAC electrode exhibits high specific capacitance of 247 F g−1 at 0.5 A g−1 and excellent rate performance in 2 M KOH aqueous electrolyte. Furthermore, the all-solid-state asymmetric supercapacitor (ASC) was assembled using PNAC as negative electrode, ZnCo2O4 nanosheet arrays as positive electrode and the PVA–KOH gel as solid-state electrolyte, which shows superior electrochemical behavior an energy density of 14.1 W h kg−1 at power density of 375 W kg−1 and super cycle performance of 81.3% capacitance retention after 5000 cycles at 4 A g−1. A red light-emitting-diode can be lighted using two ASC in series, demonstrating its practical potential in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.I. Rachiy, I.M. Budzulyak, V.M. Vashchynsky, N.Y. Ivanichok, M.O. Nykoliuk, Electrochemical properties of nanoporous carbon material in aqueous electrolytes. Nanoscale Res. Lett. 11, 18 (2016)

    Article  Google Scholar 

  2. J. Chen, C. Li, G.Q. Shi, Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 4, 1244–1253 (2013)

    Article  Google Scholar 

  3. M.J. Zhi, C.C. Xiang, J.T. Li, M. Li, N.Q. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013)

    Article  Google Scholar 

  4. C.L. Yan, W. Xi, W.P. Si, J.W. Deng, O.G. Schmidt, Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability. Adv. Mater. 25, 539–544 (2013)

    Article  Google Scholar 

  5. Y. Chen, L.F. Liu, J. Xiong, T.Z. Yang, Y. Qin, C.L. Yan, Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater. 25, 6701–6709 (2015)

    Article  Google Scholar 

  6. L. Li, Q.F. Zhong, N.D. Kim, G.D. Ruan, Y. Yang, C.T. Gao, H.L. Fei, Y.L. Li, Y.S. Ji, J.M. Tour, Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon 105, 260–267 (2016)

    Article  Google Scholar 

  7. L.Y. Jiang, Y.W. Sui, J.Q. Qi, Y. Chang, Y.Z. He, Q.K. Meng, F.X. Wei, Z. Sun, Y.X. Jin, Structure dependence of Fe-Co hydroxides on Fe/Co ratio and their application for supercapacitors. Part. Part. Syst. Charact. 34, 1600239 (2017)

    Article  Google Scholar 

  8. G.F. Ma, J.D. Li, K.J. Sun, H. Peng, E.K. Feng, Z.Q. Lei, Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode. J. Solid State Electrochem. 21, 525–535 (2017)

    Article  Google Scholar 

  9. Q.X. Xie, R.R. Bao, C. Xie, A.R. Zheng, S.H. Wu, Y.F. Zhang, R.W. Zhang, P. Zhao, Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. J. Power Sources 317, 133–142 (2016)

    Article  Google Scholar 

  10. Y.X. Huang, Y. Liu, G.J. Zhao, J.Y. Chen, Sustainable activated carbon fiber from sawdust by reactivation for high-performance supercapacitors. J. Mater. Sci. 52, 478–488 (2017)

    Article  Google Scholar 

  11. J. Patino, N. Lopez-Salas, M.C. Gutierrez, D. Carriazo, M.L. Ferrer, F. del Monte, Phosphorus-doped carbon-carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. J. Mater. Chem. A 4, 1251–1263 (2016)

    Article  Google Scholar 

  12. Y.H. Zhao, M.X. Liu, X.X. Deng, L. Miao, P.K. Tripathi, X.M. Ma, D.Z. Zhu, Z.J. Xu, Z.X. Hao, L.H. Gan, Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochim. Acta 153, 448–455 (2015)

    Article  Google Scholar 

  13. Y.K. Zhou, W. Zhang, Z.H. Pan, B.X. Zhao, Graphene-doped polyaniline nanocomposites as electromagnetic wave absorbing materials. J. Mater. Sci. 28, 10921–10928 (2017)

    Google Scholar 

  14. T. Sun, C.L. Wang, D.D. Jiao, M.N. Zhu, S.X. Lv, J.Y. Xiang, C.L. Qin, Facile preparation of porous N-doped carbon via a one-step carbonization/activation treatment of polyvinylpyrrolidone/melamine formaldehyde resin with ammonium carbonate and its enhanced electrochemical performances for supercapacitors. J. Mater. Sci. 28, 8993–9002 (2017)

    Google Scholar 

  15. J.W. Lang, X.B. Yan, W.W. Liu, R.T. Wang, Q.J. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J. Power Sources 204, 220–229 (2012)

    Article  Google Scholar 

  16. D.S. Su, R. Schlogl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications, ChemSusChem, 3, 136–168 (2010)

    Article  Google Scholar 

  17. Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    Article  Google Scholar 

  18. D. Nan, Z.H. Huang, R.T. Lv, L. Yang, J.G. Wang, W.C. Shen, Y.X. Lin, X.L. Yu, L. Ye, H.Y. Sun, F.Y. Kang, Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance freestanding electrode materials. J. Mater. Chem. A 2, 19678–19684 (2014)

    Article  Google Scholar 

  19. L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, S.H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6, 7092–7102 (2012)

    Article  Google Scholar 

  20. F. Beguin, K. Szostak, G. Lota, E. Frackowiak, A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv. Mater. 17, 2380–2384 (2005)

    Article  Google Scholar 

  21. F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717–724 (2011)

    Article  Google Scholar 

  22. B. Xu, S.S. Hou, G.P. Cao, F. Wu, Y.S. Yang, Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J. Mater. Chem. 22, 19088–19093 (2012)

    Article  Google Scholar 

  23. I.K. Moon, S. Yoon, K.Y. Chun, J. Oh, Highly elastic and conductive n-doped monolithic graphene aerogels for multifunctional applications. Adv. Funct. Mater. 25, 6976–6984 (2015)

    Article  Google Scholar 

  24. J.H. Hou, C.B. Cao, F. Idrees, X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015)

    Article  Google Scholar 

  25. W. Yang, W. Yang, F. Ding, L. Sang, Z.P. Ma, G.J. Shao, Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111, 419–427 (2017)

    Article  Google Scholar 

  26. S.Y. Gao, K.R. Geng, H.Y. Liu, X.J. Wei, M. Zhang, P. Wang, J.J. Wang, Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ. Sci. 8, 221–229 (2015)

    Article  Google Scholar 

  27. J.F. Zang, S.J. Bao, C.M. Li, H.J. Bian, X.Q. Cui, Q.L. Bao, C.Q. Sun, J. Guo, K.R. Lian, Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J. Phys. Chem. C 112, 14843–14847 (2008)

    Article  Google Scholar 

  28. R. Arrigo, M. Havecker, S. Wrabetz, R. Blume, M. Lerch, J. McGregor, E.P.J. Parrott, J.A. Zeitler, L.F. Gladden, A. Knop-Gericke, R. Schlogl, D.S. Su, Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 132, 9616–9630 (2010)

    Article  Google Scholar 

  29. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438–447 (2009)

    Article  Google Scholar 

  30. T.C. Nagaiah, A. Bordoloi, M.D. Sanchez, M. Muhler, W. Schuhmann, Mesoporous nitrogen-rich carbon materials as catalysts for the oxygen reduction reaction in alkaline solution. ChemSusChem, 5, 637–641 (2012)

    Article  Google Scholar 

  31. Y.F. Zhao, W. Ran, J. He, Y.F. Song, C.M. Zhang, D.B. Xiong, F.M. Gao, J.S. Wu, Y.Y. Xia, Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl. Mater. Interface 7, 1132–1139 (2015)

    Article  Google Scholar 

  32. X. Sun, G.K. Wang, H.T. Sun, F.Y. Lu, M.P. Yu, J. Lian, Morphology controlled high performance supercapacitor behaviour of the Ni-Co binary hydroxide system. J. Power Sources 238, 150–156 (2013)

    Article  Google Scholar 

  33. Y. Chang, Y.W. Sui, J.Q. Qi, L.Y. Jiang, Y.Z. He, F.X. Wei, Q.K. Meng, Y.X. Jin, Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim. Acta 226, 69–78 (2017)

    Article  Google Scholar 

  34. S. Vijayakumar, S. Nagamuthu, S.H. Lee, K.S. Ryu, Porous thin layered nanosheets assembled ZnCo2O4 grown on Ni-foam as an efficient electrode material for hybrid supercapacitor applications. Int. J. Hydrogen Energy 42, 3122–3129 (2017)

    Article  Google Scholar 

  35. H.X. Chuo, H. Gao, Q. Yang, N. Zhang, W.B. Bu, X.T. Zhang, Rationally designed hierarchical ZnCo2O4/Ni(OH)(2) nanostructures for high-performance pseudocapacitor electrodes. J. Mater. Chem. A 2, 20462–20469 (2014)

    Article  Google Scholar 

  36. V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A 82, 567–573 (2006)

    Article  Google Scholar 

  37. D.Z. Kong, C.W. Cheng, Y. Wang, J.I. Wong, Y.P. Yang, H.Y. Yang, Three-dimensional Co3O4@C@Ni3S2 sandwich-tructured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 16150–16161 (2015)

    Article  Google Scholar 

  38. Y.H. Xiao, Y.B. Cao, Y.Y. Gong, A.Q. Zhang, J.H. Zhao, S.M. Fang, D.Z. Jia, F. Li, Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites. J. Power Sources 246, 926–933 (2014)

    Article  Google Scholar 

  39. C.H. Tang, Z. Tang, H. Gong, Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. J. Electrochem. Soc. 159, A651–A656 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017XKQY005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqiu Qi or Zhi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, L., Qi, J. et al. All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays. J Mater Sci: Mater Electron 29, 2120–2130 (2018). https://doi.org/10.1007/s10854-017-8124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8124-7

Navigation