Skip to main content

Advertisement

Log in

Synthesis of Cu2O by oxidation-assisted dealloying method for flexible all-solid-state asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Supercapacitors are promising energy storage devices for flexible electronics because of their integration of lightweight, tiny volume and high flexibility. Here, a facile yet effective method was developed to synthesize Cu2O, by oxidation-assisted dealloying and subsequent electrochemical strategies. The assembled asymmetric supercapacitor device, using Cu2O as the positive electrode and active carbon as the negative electrode could be operated with high voltage region of 1.65 V and exhibited a high energy density of 20.04 Wh kg−1. Additionally, our device had an excellent long-term cycling stability with more than 93.3% retention after 5000 cycles. To demonstrate potential application of our prepared flexible all-solid-state ASC device, four charged devices were constructed in series, they were able to illuminate 52 red colored LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Yuan, X. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. Hu, Y. Tong, J. Zhou, Z.L. Wang, Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano, 6, 656–661 (2012)

    Article  Google Scholar 

  2. Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D.G. Evans, X. Duan, A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays, Nano Energy 20, 294–304 (2016)

    Article  Google Scholar 

  3. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555–562 (2014)

    Article  Google Scholar 

  4. K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl. Mater. Interfaces 9, 15350–15363 (2017)

    Article  Google Scholar 

  5. N. Wang, M. Yao, P. Zhao, W. Hu, S. Komarneni, Remarkable electrochemical properties of novel LaNi0.5Co0.5O3/0.333Co3O4 hollow spheres with a mesoporous shell. J. Mater. Chem. A 5, 5838–5845 (2017)

    Article  Google Scholar 

  6. H. Pang, X. Li, Q. Zhao, H. Xue, W. Lai, Z. Hu, W. Huang, One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)(2)-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. Nano Energy 35, 138–145 (2017)

    Article  Google Scholar 

  7. J. Zhao, C. Li, Q. Zhang, J. Zhang, X. Wang, Z. Lin, J. Wang, W. Lv, C. Lu, C. Wong, Y. Yao, An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J. Mater. Chem. A 5, 6928–6936 (2017)

    Article  Google Scholar 

  8. N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M. Zhu, High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 15014582 (2016)

    Google Scholar 

  9. L. Liu, Y. Yu, C. Yan, K. Li, Z. Zheng, Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 6, 7260 (2015)

    Article  Google Scholar 

  10. Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9, 5310–5317 (2015)

    Article  Google Scholar 

  11. H. Jin, L. Zhou, C.L. Mak, H. Huang, W.M. Tang, HLW Chan, High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized cft electrodes for wearable/stretchable electronics. Nano Energy 11, 662–670 (2015)

    Article  Google Scholar 

  12. D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y. Chen, Emergence of fiber supercapacitors. Chem. Soc. Rev. 44, 647–662 (2015)

    Article  Google Scholar 

  13. C. Hu, K. Chang, M. Lin, Y. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)

    Article  Google Scholar 

  14. M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)

    Article  Google Scholar 

  15. R. Wang, J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. He, F.X. Wei, Q.K. Meng, Z. Sun, Y.L. Zhao, Fabrication of nanosheets Co3O4 by oxidation-assisted dealloying method for high capacity supercapacitors. Mater. Lett. 184, 181–184 (2016)

    Article  Google Scholar 

  16. A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors, J. Power Sources 347, 86–107 (2017)

    Article  Google Scholar 

  17. Y. Song, T. Liu, X. Xu, D. Feng, Y. Li, X. Liu, Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 25, 4626–4632 (2015)

    Article  Google Scholar 

  18. R.B. Ambade, S.B. Ambade, R.R. Salunkhe, V. Malgras, S. Jin, Y. Yamauchi, S. Lee, Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density. J. Mater. Chem. A 4, 7406–7415 (2016)

    Article  Google Scholar 

  19. H. Lee, J. Kang, M.S. Cho, J. Choi, Y. Lee, MnO2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance. J. Mater. Chem. 21, 18215–18219 (2011)

    Article  Google Scholar 

  20. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731–736 (2014)

    Article  Google Scholar 

  21. Y. Yang, Y. Liang, Z. Zhang, Y. Zhang, H. Wu, Z. Hu, Morphology well-controlled synthesis of NiO by solvothermal reaction time and their morphology-dependent pseudocapacitive performances. J. Alloy Compd. 658, 621–628 (2016)

    Article  Google Scholar 

  22. X.Y. Wang, X.Y. Wang, W.G. Huang, P.J. Sebastian, S. Gamboa, Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. J. Power Sources 140, 211–215 (2005)

    Article  Google Scholar 

  23. H.J. Qiu, J.L. Kang, P. Liu, A. Hirata, T. Fujita, M.W. Chen, Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. J. Power Sources 247, 896–905 (2014)

    Article  Google Scholar 

  24. C. Qin, Y. Zhang, Z. Wang, H. Xiong, H. Yu, W. Zhao, One-step synthesis of CuO@Brass foil by dealloying method for low-cost flexible supercapacitor electrodes. J. Mater. Sci.-Mater. Electron. 27, 9206–9215 (2016)

    Article  Google Scholar 

  25. N. Wang, P. Zhao, Q. Zhang, M. Yao, W. Hu, Monodisperse nickel/cobalt oxide composite hollow spheres with mesoporous shell for hybrid supercapacitor: a facile fabrication and excellent electrochemical performance. Composites B 113, 144–151 (2017)

    Article  Google Scholar 

  26. K. Liang, X. Tang, B. Wei, W. Hu, Fabrication and characterization of a nanoporous NiO film with high specific energy and power via an electrochemical dealloying approach. Mater. Res. Bull. 48, 3829–3833 (2013)

    Article  Google Scholar 

  27. M. Jeong, K. Zhuo, S. Cherevko, W. Kim, C. Chung, Facile preparation of three-dimensional porous hydrous ruthenium oxide electrode for supercapacitors. J. Power Sources 244, 806–811 (2013)

    Article  Google Scholar 

  28. H.J. Qiu, H.T. Xu, L. Liu, Y. Wang, Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale 7, 386–400 (2015)

    Article  Google Scholar 

  29. Y. Yang, L. Pei, X. Xu, J. Xu, J. Shen, M. Ye, In-situ growth of self-assembled 3D Cu2O@Cu foam with enhanced electrochemical properties. Electrochim. Acta 221, 56–61 (2016)

    Article  Google Scholar 

  30. C. Wan, Y. Jiao, J. Li, A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a flexible and free-standing electrode for symmetric supercapacitors. J. Mater. Chem. A 5, 17267–17278 (2017)

    Article  Google Scholar 

  31. P. Yang, W. Mai, Flexible solid-state electrochemical supercapacitors. Nano Energy 8, 274–290 (2014)

    Article  Google Scholar 

  32. Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)

    Article  Google Scholar 

  33. L. Wei, G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1, 552–565 (2012)

    Article  Google Scholar 

  34. F. Li, L. Zhang, J. Tong, Y. Liu, S. Xu, Y. Cao, S. Cao, Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy 27, 320–329 (2016)

    Article  Google Scholar 

  35. X. An, K. Li, J. Tang, Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 7, 1086–1093 (2014)

    Article  Google Scholar 

  36. Y.W. Sui, Y.M. Zhang, P.H. Hou, J.Q. Qi, F.X. Wei, Y.Z. He, Q.K. Meng, Z. Sun, Three-dimensional NiCo2S4 nanosheets as high-performance electrodes materials for supercapacitors. J. Mater. Sci. 52, 7100–7109 (2017)

    Article  Google Scholar 

  37. J. Chen, J. Xu, S. Zhou, N. Zhao, C. Wong, Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J. Mater. Chem. A 3, 17385–17391 (2015)

    Article  Google Scholar 

  38. C. Dong, Y. Wang, J. Xu, G. Cheng, W. Yang, T. Kou, Z. Zhang, Y. Ding, 3D Binder-Free Cu2O@Cu nanoneedle arrays for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2, 18229–18235 (2014)

    Article  Google Scholar 

  39. J. Ruan, Y. Huo, B. Hu, Three-dimensional Ni,(OH)2/Cu2O/CuO porous cluster grown on nickel foam for high performance supercapacitor. Electrochim. Acta 215, 108–113 (2016)

    Article  Google Scholar 

  40. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  Google Scholar 

  41. T. Wang, S. Zhang, X. Yan, M. Lyu, L. Wang, J. Bell, H. Wang, 2-methylimidazole-derived Ni–Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl. Mater. Interfaces 9, 15510–15524 (2017)

    Article  Google Scholar 

  42. D. Kong, C. Cheng, Y. Wang, J.I. Wong, Y. Yang, H.Y. Yang, Three-dimensional Co3O4 @C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 16150–16161 (2015)

    Article  Google Scholar 

  43. B. Dong, M. Li, S. Chen, D. Ding, W. Wei, G. Gao, S. Ding, Formation of g-C3N4@Ni(OH)2Honeycomb nanostructure and asymmetric supercapacitor with high energy and power density. ACS Appl. Mater. Interfaces, 9, 17890–17896 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Fundamental Research Funds for the Central Universities (No. 2017XKQY004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwei Sui or Fei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Sui, Y., Yang, F. et al. Synthesis of Cu2O by oxidation-assisted dealloying method for flexible all-solid-state asymmetric supercapacitors. J Mater Sci: Mater Electron 29, 2080–2090 (2018). https://doi.org/10.1007/s10854-017-8121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8121-x

Navigation