Influence of texture on the electrical properties of Al-doped ZnO films prepared by ultrasonic spray pyrolysis

Abstract

ZnO: Al thin films were deposited by spray pyrolysis onto glass substrates with 0, 0.5, 1.0, 2.0, 5.0 and 10.0% [Al3+/Zn2+] ratios in the deposition solution. Films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis transmittance, conductive atomic force microscopy and the sheet resistance was measured. Aluminum contents in the films increases with the Al3+/Zn2+ ratio in the bath while the film deposition rate decreases due to the lower Al3+ surface mobility. Films were crystalline and display a varied morphology that evolves from flakes to mixtures between flakes and pencils and finally between triangles and hexagonal columns with increasing Al contents. Al3+ inclusion at the different sites within the ZnO lattice is proposed to direct the crystal habit and therefore the observed morphology and film texture. The optical band gap evolution and carrier density are related by the Burstein-Moss effect. The results show that film texture influences carrier mobility: increased presence of (112) planes originate a mobility increase while a predominant (110) or (100) texture reduces it. By Current sensing Atomic Force Microscopy (CAFM) the local surface current distribution was related with the observed film texture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M. Fallah, M.R. Zamani-Meymian, R. Rahimi, M. Rabbani, Appl. Surf. Sci. 316, 456 (2014)

    Article  Google Scholar 

  2. 2.

    H. Scherg-Kurmes, S. Seeger, S. Körner, B. Rech, R. Schlatmann, B. Szyszka, Thin Solid Films 599, 78 (2016)

    Article  Google Scholar 

  3. 3.

    B. Kumar, S.-W. Kim, Nano Energy 1, 342 (2012)

    Article  Google Scholar 

  4. 4.

    A. Wei, L. Pan, W. Huang, Mater. Sci. Eng. 176, 1409 (2011)

    Article  Google Scholar 

  5. 5.

    D.J. Rogers, V.E. Sandana, S. Gautier, T. Moudakir, M. Abid, A. Ougazzaden, F.H. Teherani, P. Bove, M. Molinari, M. Troyon, M. Peres, M.J. Soares, A.J. Neves, T. Monteiro, D. McGrouther, J.N. Chapman, H.J. Drouhin, R. McClintock, M. Razeghi, Nano. Fund. Appl. 15, 53 (2015)

    Article  Google Scholar 

  6. 6.

    S. Tabassum, E. Yamasue, H. Okumura, K.N. Ishihara, Appl. Surf. Sci. 377, 355 (2016)

    Article  Google Scholar 

  7. 7.

    Y. Yamada, K. Kadowaki, H. Kikuchi, S. Funaki, S. Kubo, Thin Solid Films 609, 25 (2016)

    Article  Google Scholar 

  8. 8.

    A. Tubtimtae, M.-W. Lee, Superlatt. Microstruct. 52, 987 (2012)

    Article  Google Scholar 

  9. 9.

    J.K. Jeong, H.J. Yun, S.D. Yang, K.Y. Eom, S.W. Chea, J.H. Park, H.D. Lee, G.W. Lee, Thin Solid Films 638, 89–95 (2017)

    Article  Google Scholar 

  10. 10.

    D.J. Edison, W. Nirmala, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, Phys. B 523, 31–38 (2017)

    Article  Google Scholar 

  11. 11.

    C.Y. Chi, H.I. Chen, W.C. Chen, C.H. Chang, W.C. Liu, Sens. Actuators B 243, 1248 (2017)

    Article  Google Scholar 

  12. 12.

    S. Boscarino, G. Torrisi, I. Crupi, A. Alberti, S. Mirabella, F. Ruffino, A. Terrasi, Nuclear Instr. Methods Phys. Res. Section B 392, 14–20 (2017)

    Article  Google Scholar 

  13. 13.

    L. Dejam, A.A. Shokri, H.H. Nazari, S.M. Elahi, J. Mater. Sci. 28, 9378–9386 (2017)

    Google Scholar 

  14. 14.

    F. Wang, C. Chang, Appl. Surf. Sci. 370, 83 (2016)

    Article  Google Scholar 

  15. 15.

    M.S. Al-Assiri, M.M. Mostafa, M.A. Ali, M.M. El-Desoky, Superlatt. Microstruct. 75, 127 (2014)

    Article  Google Scholar 

  16. 16.

    X. Duan, G. Chen, L. Guo, Y. Zhu, H. Ye, Y. Wu, Superlatt. Microstruct. 88, 501 (2015)

    Article  Google Scholar 

  17. 17.

    M. Ying, S. Wang, T. Duan, B. Liao, X. Zhang, Z. Mei, X. Du, F.M. Gerriu, A.M. Fox, G.A. Gehring, Mater. Lett. 171, 121 (2016)

    Article  Google Scholar 

  18. 18.

    Y. Sun, H. Guo, W. Zhang, T. Zhou, Y. Qiu, K. Xu, B. Zhang, H. Yang, Ceram. Int. 42, 9648 (2016)

    Article  Google Scholar 

  19. 19.

    M. Wang, J. Yi, S. Yang, Z. Cao, X. Huang, Y. Li, H. Li, J. Zhong, Appl. Surf. Sci. 382, 217 (2016)

    Article  Google Scholar 

  20. 20.

    Y. Aoun, B. Benhaoua, S. Benramache, B. Gasmi, Optik 126, 2481 (2015)

    Article  Google Scholar 

  21. 21.

    N. Kıcır, T. Tüken, O. Erken, C. Gumus, Y. Ufuktepe, Appl. Surf. Sci. 377, 191 (2016)

    Article  Google Scholar 

  22. 22.

    X. Fang, J. Li, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, Z. Wei, Thin Solid Films 518, 5687 (2010)

    Article  Google Scholar 

  23. 23.

    K.M. Fang, Z.Z. Wang, M. Zhang, A.J. Wang, Z.Y. Meng, J.J. Feng, J. Colloid Interface Sci. 402, 68 (2013)

    Article  Google Scholar 

  24. 24.

    N.T. Son, J.-S. Noh, S. Park, Appl. Surf. Sci. 379, 440 (2016)

    Article  Google Scholar 

  25. 25.

    G.N. Dar, A. Umar, S.A. Zaidi, S. Baskoutas, S.W. Hwang, M. Abaker, A. Al-Hajry, S.A. Al-Sayari, Talanta 89, 155 (2012)

    Article  Google Scholar 

  26. 26.

    M. Salavati-Niasari, N. Mir, F. Davar, J. Alloys Compd. 476, 908 (2009)

    Article  Google Scholar 

  27. 27.

    A.W. Metz, J.R. Ireland, J.-G. Zheng, R.P.S.M. Lobo, Y. Yang, J. Ni, C.L. Stern, V.P. Dravid, N. Bontemps, C.R. Kannewurf, K.R. Poeppelmeier, T.J. Marks, J. Am. Chem. Soc. 126, 8477 (2004)

    Article  Google Scholar 

  28. 28.

    J.T. Wang, X.L. Shi, W.W. Liu, X.H. Zhong, J.N. Wang, L. Pyrah, K.D. Sanderson, P.M. Ramsey, M. Hirata, K. Tsuri, Sci. Rep. 4, 3679 (2014)

    Article  Google Scholar 

  29. 29.

    C.F. Yu, S.H. Chen, W.J. Xie, Y.S. Lin, C.Y. Shen, S.J. Tsai, C.W. Sung, C. Ay, Microsc. Res. Technol. 71, 1 (2008)

    Article  Google Scholar 

  30. 30.

    J.A. Barón-Miranda, O. Calzadilla, L.E. Arvizu-Rodríguez, J.L. Fernández-Muñoz, C. Guarneros-Aguilar, F.F. Chale-Lara, U. Páramo-García, F. Caballero-Briones, Coatings 6, 71 (2016)

    Article  Google Scholar 

  31. 31.

    F. Caballero-Briones, A. Palacios-Padrós, O. Calzadilla, F. Sanz, Electrochim. Acta 55, 4353 (2010)

    Article  Google Scholar 

  32. 32.

    R. Horcas, J.M. Fernandez, J. Gomez-Rodriguez, J. Colchero, A.M. Gomez-Herrero, Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  Google Scholar 

  33. 33.

    A. Henni, A. Merrouche, L. Telli, A. Karar, J. Electroanalytical. Chem. 763, 149 (2016)

    Article  Google Scholar 

  34. 34.

    A. Crossay, S. Buecheler, L. Kranz, J. Perrenoud, C.M. Fella, Y.E. Romanyuk, A.N. Tiwari, Solar Energy Mater. Solar Cells 101, 283 (2012)

    Article  Google Scholar 

  35. 35.

    S. Gledhill, A. Grimm, D. Greiner, W. Bohne, M. Lux-Steiner, C.-H. Fischer, Thin Solid Films 519, 4293 (2011)

    Article  Google Scholar 

  36. 36.

    E. Pereira da Silva, M. Chaves, G. Junior da Silva, L. Baldo de Arruda, P.N. Lisboa-Filho, S.F. Durrant, J.R.R. Bortoleto, Mater. Sci. Appl. 04, 761 (2013)

    Google Scholar 

  37. 37.

    E. Chan y Díaz, R. Castro-Rodríguez, I. Perez-Quintana, M. Acosta, J. Méndez-Gamboa, R.A. Medina-Esquivel, C. Acosta, A. Iribarren, J. Mater. Sci. (2017)

  38. 38.

    F. Gracia, J.P. Holgado, A.R. Gonzalez-Elipe, Langmuir 20, 1688 (2004)

    Article  Google Scholar 

  39. 39.

    W. Li, E. Shi, W. Zhong, Z. Yin, J. Cryst. Growth 203, 186 (1999)

    Article  Google Scholar 

  40. 40.

    R. Amiruddin, S. Devasia, D.K. Mohammedali, M.C. Santhosh Kumar, Semicond. Sci. Technol. 30, 035009 (2015)

    Article  Google Scholar 

  41. 41.

    X. Zhou, Z.X. Xie, Z.Y. Jiang, Q. Kuang, S.H. Zhang, T. Xu, R.B. Huang, L.S. Zheng, Chem. Commun. 44, 5572 (2005)

    Article  Google Scholar 

  42. 42.

    Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou, S. Yang, J. Cryst. Growth 243, 439 (2002)

    Article  Google Scholar 

  43. 43.

    L. Qi, M.B. Shahzad, Y. Qi, CrystEngComm 18, 6573 (2016)

    Article  Google Scholar 

  44. 44.

    Z. Deng, C. Huang, J. Huang, M. Wang, H. He, H. Wang, Y. Cao, J. Mater. Sci. 21, 1030 (2010)

    Google Scholar 

  45. 45.

    K. Elmer, A. Klein, B. Rench, Transparent conductive zinc oxide. (Springer, Berlin, 2008)

    Book  Google Scholar 

  46. 46.

    S. Pat, R. Mohammadigharehbagh, S. Özen, V. Şenay, H.H. Yudar, Ş. Korkmaz, Vacuum 141, 210–215 (2017)

    Article  Google Scholar 

  47. 47.

    A.C. Aragonès, A. Palacios-Padrós, F. Caballero-Briones, F. Sanz, Electrochim. Acta 109, 117 (2013)

    Article  Google Scholar 

  48. 48.

    V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998)

    Article  Google Scholar 

  49. 49.

    H. Serier, M. Gaudon, M. Ménétrier, Solid State Sci. 11, 1192 (2009)

    Article  Google Scholar 

  50. 50.

    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  51. 51.

    L. Tiburcio-Silver, Castañeda, J. Phys. D: Appl. Phys. 41, 228001 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

FCB thanks the financial support of SIP-IPN 2016-1804 multidisciplinary project as well as EDI and SIBE grants from IPN. OCA acknowledges SIP-IP 2016-1804 visiting professor aid. Support from P. Quintana-Owen and W. Cauich at LANNBIO-Merida (CONACYT Grants FOMIX-Yucatan 2008-108160 and LAB-2009-01 123913) for SEM/EDS is kindly recognized.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Caballero-Briones.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barón-Miranda, J.A., Calzadilla, O., San-Juan-Hernández, S. et al. Influence of texture on the electrical properties of Al-doped ZnO films prepared by ultrasonic spray pyrolysis. J Mater Sci: Mater Electron 29, 2016–2025 (2018). https://doi.org/10.1007/s10854-017-8113-x

Download citation