Skip to main content
Log in

Sucrose derived carbon coated silicon nanowires for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sucrose derived carbon coated silicon nanowires (SDCC-SiNWs) were prepared by drop casting of sucrose derived carbon (SDC) slurries and used as active electrode material for supercapacitors. It was observed that the SDC particles were coated over SiNWs. The results obtained by cyclic voltammetry, galvanostatic charge/discharge measurements of SDCC-SiNWs showed superior capacitive performance compared to just SDC based supercapacitors. SDCC-SiNWs has a significantly higher areal capacitance of 3.3 mF/cm2 as compared to that of bare SiNWs (96 µF/cm2) or SDC based electrode (817 µF/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4, 1337–1344 (2010)

    Article  Google Scholar 

  2. M.V. Kiamahalleh, S.H.S. Zein, Multiwalled carbon nanotubes based nanocomposites for supercapacitors a review of electrode materials. Brief. Rep. Rev. 7, 1230002 (2012)

    Google Scholar 

  3. J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011)

    Article  Google Scholar 

  4. R.J. Mo, Y. Zhao, M. Wu, H.M. Xiao, S. Kuga, Y. Huang, J.P. Lia, S.Y. Fu, Activated carbon from nitrogen rich watermelon rind for high-performance supercapacitors. RSC Adv. 6, 59333–59342 (2016)

    Article  Google Scholar 

  5. K. Krishnamoorthy, S. Thangavel, J.C. Veetil, N. Raju, G. Venugopal, S.J. Kim, Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors. Int. J. Hydrogen Energy 3, 1–7 (2015)

    Google Scholar 

  6. Q. Chen, Y. Zhao, X. Huang, N. Chen, L. Qu, Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. J. Mater. Chem. A 3, 6761–6766 (2015)

    Article  Google Scholar 

  7. M. Pumera, Z. Sofer, A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2, 8981–8987 (2014)

    Article  Google Scholar 

  8. D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl. Mater. Interfaces 6, 11173–11179 (2014)

    Article  Google Scholar 

  9. J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011)

    Article  Google Scholar 

  10. X. Rui, H. Tan, Q. Yan, Nanostructured metal sulfides for energy storage. Nanoscale 6, 9889–9924 (2014)

    Article  Google Scholar 

  11. K. Krishnamoorthy, S. Thangavel, J.C. Veetil, N. Raju, G. Venugopal, S.J. Kim, Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors. J. Power Sources 321, 112–119 (2016)

    Article  Google Scholar 

  12. J.W. Choi, J.M. Donough, S. Jeong, J.S. Yoo, C.K. Chan, Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 10, 1409–1413 (2010)

    Article  Google Scholar 

  13. J.P. Alper, S. Wang, F. Rossi, G. Salviati, N. Yiu, C. Carraro, R. Maboudian, Selective ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors. Nano Lett. 14, 1843–1847 (2014)

    Article  Google Scholar 

  14. P. Huang, M. Heon, D. Pech, M. Brunet, P.-L. Taberna, Y. Gogotsi, S. Lofland, J.D. Hettinger, P. Simon, Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 225, 240–244 (2013)

    Article  Google Scholar 

  15. J.P. Alper, M. Vincent, C. Carraro, R. Maboudian, Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor. Appl. Phys. Lett. 100, 163901 (2012)

    Article  Google Scholar 

  16. L. Oakes, A. Westover, J.W. Mares, S. Chatterjee, W.R. Erwin, R. Bardhan, S.M. Weiss, C.L. Pint, Surface engineered porous silicon for stable, high performance electrochemical supercapacitors. Sci. Rep. 3, 3020 (2013)

    Article  Google Scholar 

  17. D. Aradilla, D. Gaboriau, G. Bidan, P. Gentile, D.M. Boniface, D. Dubal, P. Gomez-Romero, J. Imberg, T.J.S. Schubert, S. Sadki, An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid microsupercapacitors. J. Mater. Chem. A 3, 13978–13985 (2015)

    Article  Google Scholar 

  18. D. Aradilla, G. Bidan, P. Gentile, P. Weathers, F. Thissandier, V. Ruiz, P. Gomez-Romero, T.J.S. Schubert, H. Sahin, Sadki, Novel hybrid micro-supercapacitor based on conducting polymercoated silicon nanowires for electrochemical energy storage. RSC Adv. 4, 26462–26467 (2014)

    Article  Google Scholar 

  19. D.P. Dubal, D. Aradilla, G. Bidan, P. Gentile, T.J. Schubert, J. Wimberg, S. Sadki, P. Gomez-Romero, 3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li-doped ionic liquid. Sci. Rep. 5, 9771 (2015)

    Article  Google Scholar 

  20. L. Gu, Y. Wang, R. Lu, W. Wang, X. Peng, J. Sha, Silicon carbide nanowires@Ni(OH)2 core-shell structures on carbon. J. Power Sources 273, 479–485 (2015)

    Article  Google Scholar 

  21. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001)

    Article  Google Scholar 

  22. G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)

    Article  Google Scholar 

  23. R. Kumar, V. More, S. Monthy, S. Sankar, S. Mallick, P. Bhargava, A simple route to making counter electrode for dye sensitized solar cells (DSSCs) using sucrose as carbon precursor. J. Coll. Interface Sci. 459, 146–150 (2015)

    Article  Google Scholar 

  24. A. Soam, N. Arya, A. Kumbhar, R. Dusane, Controlling the shell microstructure in a low-temperature-grown SiNWs and correlating it to the performance of the SiNWs-based micro-supercapacitor. Appl. Nanosci. 6, 1–7 (2016)

    Article  Google Scholar 

  25. R. Alcantara, F.J. Fernandez Madrigal, P. Lavela, C.P. Vicente, J.L. Tirado, Tin oxalate as a precursor of tin dioxide and electrode materials for lithium-ion batteries. J. Solid State Electrochem. 6, 55–62 (2001)

    Article  Google Scholar 

  26. P.M. Ladeira, P. Puech, C. Toulouse, M. Cazayous, N.R. Ramond, P. Weisbecker, G.L. Vignoles, M. Monthioux, A Raman study to obtain crystallite size of carbon materials: a better alternative to the Tuinstra–Koenig law. Carbon 80, 629–639 (2014)

    Article  Google Scholar 

  27. N. Meshram, A. Kumbhar, R.O. Dusane, Synthesis of silicon nanowires using tin catalyst by hot wire chemical vapor processing. Mater. Res. Bull. 48, 2254–2258 (2013)

    Article  Google Scholar 

  28. F. Lu, M. Qiu, X. Qi, L. Yang, J. Yin, G. Hao, X. Feng, J. Li, J. Zhong, Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes. Appl. Phys. A 104, 545–550 (2011)

    Article  Google Scholar 

  29. J.P. Alper, M.S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, R. Maboudian, Silicon carbide nanowires as highly robust electrodes for microsupercapacitor applications. J. Power Sources 230, 298–302 (2013)

    Article  Google Scholar 

  30. P. Soam, A. Kavle, R.O. Kumbhar, Dusane, Performance enhancement of micro-supercapacitor by coating of graphene on silicon nanowires at room temperature. Curr. Appl. Phys. 17, 314–320 (2017)

    Article  Google Scholar 

  31. D. Aradilla, G. Bidan, P. Gentile, P. Weathers, F. Thissandier, V. Ruiz, T.J.S. Gomez-Romero, Schubert,, H. Sahin, G. Sadki, C. Bidan, Nebel, A step forward in to hierarchically nanostructured materials for high performance micro-supercapacitors: diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochem. Commun. 63, 34–38 (2016)

    Article  Google Scholar 

  32. R.R. Devarapalli, S. Szunerits, Y. Coffinier, M.V. Shelke, R. Boukherroub, Glucose-derived porous carbon-coated silicon nanowires as efficient electrodes for aqueous micro-supercapacitors. Appl. Mater. Interfaces 8, 4298–4302 (2016)

    Article  Google Scholar 

  33. J. Zhu, A.S. Childress, M. Karakaya, S. Dandeliya, A. Srivastava, Y. Lin, A.M. Rao, R. Podila, Defect-engineered graphene for high-energy- and high- power-density supercapacitor devices. Adv. Mater. 28, 7185–7192 (2016)

    Article  Google Scholar 

  34. M.R. Arcila-Velez, J. Zhu, A. Childressb, M. Karakaya, R. Podila, A.M. Rao, M.E. Robertsa, Roll-to-roll synthesis of vertically aligned carbon nanotube electrodes for electrical double layer capacitors. Nano Energy 8, 9–16 (2014)

    Article  Google Scholar 

  35. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012)

    Article  Google Scholar 

  36. J.B. In, B. Hsia, J.-H. Yoo, C. Carraro, R. Maboudian, C.P. Grigoropoulos, Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 83, 114–151 (2015)

    Article  Google Scholar 

  37. R.D. Levies, On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim. Acta 8, 751–780 (1963)

    Article  Google Scholar 

  38. W.G. Pell, B.E. Conway, Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behavior. J. Electroanal. Chem. 500, 121–133 (2001)

    Article  Google Scholar 

  39. J. Yina, C. Zhenga, L. Qia, H. Wanga, Concentrated NaClO4 aqueous solutions as promising electrolytes for electric double-layer capacitors. J. Power Sources 196, 4080–4087 (2011)

    Article  Google Scholar 

  40. M. Karakaya, J. Zhu, A.J. Raghavendra, R. Podila, S.G. Parler Jr., J.P. Kaplan, A.M. Rao, Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors. Appl. Phys. Lett. 105, 263103 (2014)

    Article  Google Scholar 

  41. Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554–4562 (2014)

    Google Scholar 

  42. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 13, 17615–17624 (2011)

    Article  Google Scholar 

  43. L. Wei, G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon 49, 4830–4838 (2011)

    Article  Google Scholar 

  44. T. Jansch, J. Wallauer, B. Roling, Influence of electrode roughness on double layer formation in ionic, liquids, J. Phys. Chem. C 119, 4620–4626 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The Authors are grateful to SAIF department IIT Bombay. We are also thankful to Prof. V.S. Raja and Prof. S. Parida to provide us electrochemical characterization facility and Crompton Greaves for the financial support to Rahul Kumar and Ankur Soam. FIST facility (Dual beam FIB, Carl Zeiss Microscopy) in ME & MS department was also used for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Soam, A., Dusane, R.O. et al. Sucrose derived carbon coated silicon nanowires for supercapacitor application. J Mater Sci: Mater Electron 29, 1947–1954 (2018). https://doi.org/10.1007/s10854-017-8105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8105-x

Navigation