Skip to main content
Log in

Structural and optical properties of ZnO nanorods: influence of reaction temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanorods have been prepared by hydrothermal method and the reaction temperatures are 120, 140, 160 and 180 °C, respectively. Microstructure, morphology, chemical composition and optical properties of the samples were investigated in detail. XRD and Raman spectrum analysis shows that the best crystal performance of ZnO obtained at 140 °C. The samples are mainly composed of morphology nanorods and abundant ZnO nanorods with hexagon-shaped crystallites structure are emerged at all reaction temperatures. XPS measurement indicates that the Zn and O surface atom ratio is estimated about 1.13:1 for the sample prepared at 140 °C. Compared with the UV–Visible absorption spectra of the samples obtained at 120, 140 and 180 °C, absorption edge appears slight blue shift phenomenon with reaction temperature increasing and the absorption intensity reduces at the same time. These analyses reveal that the optical band gap increases with increasing of reaction temperature and all the gaps are less than the standard value 3.2 eV of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Meng, N. Hou, S. Ge, B. Sun, Z. Jin, W. Shen, L. Kong, Z. Guo, Y. Sun, H. Wu, C. Wang, M. Li, J. Alloy. Compd. 626, 124–130 (2015)

    Article  Google Scholar 

  2. M. Kocakuşakoğlu, M. Dağlar, H.C. Konyar, K. Yatmaz, Öztürk, J. Eur. Ceram. Soc. 35, 2845–2853 (2015)

    Article  Google Scholar 

  3. R. Aladpoosh, M. Montazer, Carbohyd. Polym. 126, 122–129 (2015)

    Article  Google Scholar 

  4. R.M. Bashami, A. Hameed, M. Aslam, I.M.I. Iqbal, M.T. Soomro, Anal. Methods 7, 1794–1801 (2015)

    Article  Google Scholar 

  5. S. Lam, J. Sin, A.R. Mohamed, Mater. Lett. 167, 141–144 (2016)

    Article  Google Scholar 

  6. S. Kundu, S. Sain, M. Yoshio, T. Kar, N. Gunawardhana, S.K. Pradhan, Appl. Surf. Sci. 329, 206–211 (2015)

    Article  Google Scholar 

  7. Y. Zhang, J. Luo, Scripta Mater. 106, 26–29 (2015)

    Article  Google Scholar 

  8. Y. Zhang, J. Jung, J. Luo, Acta Mater. 94, 87–100 (2015)

    Article  Google Scholar 

  9. L. Kong, X. Yin, M. Han, L. Zhang, L. Cheng, Ceram. Int. 41, 4906–4915 (2015)

    Article  Google Scholar 

  10. S.D. Senol, O. Ozturk, C. Terzioğlu, Ceram. Int. 41, 11194–11201 (2015)

    Article  Google Scholar 

  11. M. Kahouli, A. Barhoumi, Anis Bouzid, A. Al-Hajry, S. Guermazi, Superlattice Microst. 85, 7–23 (2015)

    Article  Google Scholar 

  12. D. Escobedo-Morales, M.L.R. Téllez-Flores, J. Peralta, A.M. Garcia-Serrano, E. Herrera-González, E. Rubio-Rosas, O.O. Sánchez-Morad, Xometl, Mater. Chem. Phys. 151, 282–287 (2015)

    Article  Google Scholar 

  13. Y. Wang, J. Yang, Y. Li, T. Jiang, J. Chen, J. Wang, Mater. Chem. Phys. 153, 266–273 (2015)

    Article  Google Scholar 

  14. S. Luo, Y. Shen, Z. Wu, M. Cao, F. Gu, L. Wang, Mater. Sci. Semicon. Proc. 41, 535–543 (2016)

    Article  Google Scholar 

  15. A. Kathalingam, H.C. Park, S.D. Kim, H.S. Kim, S. Velumani, T. Mahalingam, J. Mater. Sci. Mater. Electron. 26, 5724–5734 (2015)

    Article  Google Scholar 

  16. G. He, X. Chen, Z. Sun, Surf. Sci. Rep. 68, 68–107 (2013)

    Article  Google Scholar 

  17. J. Liu, W. Cao, H. Jin, J. Yuan, D. Zhang, M. Cao, J. Mater. Chem. C 3, 4670–4677 (2015)

    Article  Google Scholar 

  18. Y. Qing, C. Yang, C. Hu, Y. Zheng, C. Liu, Appl. Surf. Sci. 326, 48–54 (2015)

    Article  Google Scholar 

  19. C.T. Dominguez, M.A. Gomes, Z.S. Macedo, C.B. Araújo, A.S.L. Gomes, Nanoscale 7, 317–323 (2015)

    Article  Google Scholar 

  20. S. Chang, P. Yang, C. Lai, S. Lu, G. Li, W. Chang, H. Tuan, CrystEngComm 18, 616–621 (2016)

    Article  Google Scholar 

  21. G. He, J. Gao, H. Chen, J. Cui, Z. Sun, X. Chen, ACS Appl. Mater. Interfaces 6, 22013–22025 (2014)

    Article  Google Scholar 

  22. K. Ocakoglu, S.A. Mansour, S. Yildirimcan, A.A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu, Spectrochim. Acta A 148, 362–368 (2015)

    Article  Google Scholar 

  23. J. Podporska-Carroll, A. Myles, B. Quilty, D.E. McCormack, R. Fagan, S.J. Hinder, D.D. Dionysioue, S.C. Pillai, J. Hazard. Mater. 324, 39–47 (2017)

    Article  Google Scholar 

  24. I.M. El-Nahhal, J.K. Salem, S. Kuhn, T. Hammad, R. Hempelmann, S.A. Bhaisi, Powder Technol. 287, 439–446 (2016)

    Article  Google Scholar 

  25. N. Tu, K.T. Nguyen, D.Q. Trung, N.T. Tuan, V. Nam, P.T. Do, Huy, J. Lumin. 174, 6–10 (2016)

    Article  Google Scholar 

  26. X. Li, S. Feng, S. Liu, Z. Li, L. Wang, Z. Zhan, W. Lu, RSC Adv. 6, 96479–96483 (2016)

    Article  Google Scholar 

  27. R. Chauhan, M. Shinde, A. Kumar, S. Gosavi, D.P. Amalnerkar, Microporous Mesoporous Mater. 226, 201–208 (2016)

    Article  Google Scholar 

  28. D.V. Dao, M. Bremt, Z. Koeller, T.K. Le, Powder Technol. 288, 366–370 (2016)

    Article  Google Scholar 

  29. S. Jafarirad, M. Mehrabi, B. Divband, M. Kosari-Nasab, Mater. Sci. Eng. C 59, 296–302 (2016)

    Article  Google Scholar 

  30. V.D. Mote, Y. Purushotham, B.N. Dole, Mater. Design 96, 99–105 (2016)

    Article  Google Scholar 

  31. J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, J. Alloys Compd. 616, 614–617 (2014)

    Article  Google Scholar 

  32. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39, 2283–2292 (2013)

    Article  Google Scholar 

  33. M. Gromyko, T. Krunks, A. Dedova, D. Katerski, I.O. Klauson, Acik, Appl. Surf. Sci. 405, 521–528 (2017)

    Article  Google Scholar 

  34. F. Cocco, B. Elsener, M. Fantauzzi, D. Atzei, A. Rossi, RSC Adv. 6, 31277–31289 (2016)

    Article  Google Scholar 

  35. N.S.A. Zak, A.M. Aziz, F. Hashim, Kordi, Ceram. Int. 42, 13605–13611 (2016)

    Article  Google Scholar 

  36. V.E. Podasca, T. Buruiana, E.C. Buruiana, Appl. Surf. Sci. 377, 262–273 (2016)

    Article  Google Scholar 

  37. H. Wang, G. Yi, X. Zu, P. Qin, M. Tan, H. Luo, Mater. Lett. 162, 83–86 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51772003 and 51472003), Anhui Provincial Natural Science Foundation (1608085ME95 and 1708085MF149), the Anhui University Provincial Natural Science Research Project, China (KJ2016A524 and KJ2016B07), the Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZD2016328, gxyqZD2016329), and the Research Project of Chuzhou University (2015qd04). The authors would like to thank Zhongqing Lin of the Experimental Technology Center of Anhui University, for electron microscope test and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xishun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Zheng, S., Lin, Q. et al. Structural and optical properties of ZnO nanorods: influence of reaction temperature. J Mater Sci: Mater Electron 29, 1933–1938 (2018). https://doi.org/10.1007/s10854-017-8103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8103-z

Navigation