Skip to main content
Log in

Structure, electrical and magnetic properties of La0.67Ca0.33−x K x MnO3 polycrystalline ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A systematic investigation of structure, electrical and magnetic properties of polycrystalline ceramics La0.67Ca0.33−x K x MnO3 (x = 0.05, 0.10, 0.15, 0.20, 0.25) samples, prepared by sol–gel method had been undertaken. As K content increases the crystal structures were transformed from orthorhombic to rhombohedral structure identified by X-ray diffraction, and the effect of increasing K ion is to increment the Mn–O–Mn bond angle. The surface morphology was investigated by scanning electron microscope, which indicates that grain size decreasing with increasing of K+. Temperature dependence of resistivity (ρ − T) was measured by standard four-probe method. The insulator–metal transition temperature (T P ) shifted to higher temperature and the temperature coefficient of resistivity decreased sharply with the substitution K+ for Ca2+ ion. The temperature dependence of magnetization (M–T) shown that Curie temperature (T C ) was increasing with the increase of K content, which can be explained by enhancement of double–exchange interaction. The data of resistivity on low-temperature (T < T P ) had been fitted with the relation ρ(T) = ρ 0 + ρ 2T2 + ρ 4.5T4.5; the high-temperature (T > T P ) resistivity data were explained using small-polaron hopping and variable-range hopping models. Resistivity data in whole temperature range (100–320 K) could be fitted by percolation model. Polaron activation energy E a was found to decrease with the content K+ increasing, which suggested that K doping increase bond angle Mn–O–Mn, thereby the effective band gap was decreased and the double exchange coupling was increased of, this is the reason for the decrease of resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Dhahri, F.I.H. Rhouma, S. Mnefgui, J. Dhahri, K.E. Hlil, Ceram. Int. 40, 459 (2014)

    Article  Google Scholar 

  2. A. Selmi, R. M’Nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 10177 (2015)

    Article  Google Scholar 

  3. S. Mnefgui, N. Zaidi, N. Dhahri, J. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 384, 219 (2015)

    Article  Google Scholar 

  4. M.H. Ehsani, P. Kameli, S.F. Razavi, M.E. Ghazi, B. Aslibeiki, J. Alloys Comp. 579, 406 (2013)

    Article  Google Scholar 

  5. A.G. Gamzatov, A.B. Batdalov, L.N. Khanov, A.S. Mankevich, I.E. Korsakov, A.R. Kaul, Phys. Solid State 54, 617 (2012)

    Article  Google Scholar 

  6. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  Google Scholar 

  7. D. Neila, D. Abdessalem, D. Jemai, H.E. Kebir, D. Essebti, J. Magn. Magn. Mater. 326, 129 (2013)

    Article  Google Scholar 

  8. D.G. Kuberkar, R.R. Doshia, P.S. Solankia, U. Khachara, M. Vagadiaa, A. Ravaliaa, V. Ganesanb, Appl. Surf. Sci. 258, 9041 (2012)

    Article  Google Scholar 

  9. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)

    Article  Google Scholar 

  10. X. Yin, X. Liu, Y. Yan, Q. Chen, J. Sol-Gel. Sci. Technol. 70, 361 (2014)

    Article  Google Scholar 

  11. M. Ben Rejeba, C. Ben osmanb, Y. Regaiega, A. Marzouki-Ajmia, W. Cheikhrouhou-Koubaa, S. Ammar-Merah, A. Cheikhrouhou, T. Mhiri, J. Alloys Compd. 695, 2597 (2017)

    Article  Google Scholar 

  12. A.M. Showkat, Y.P. Zhang, S. Kim, A.I. Gopalan, K.R. Reddy, K.P. Lee, Bull. Korean Chem. Soc. 28, 1985 (2007)

    Article  Google Scholar 

  13. M. Jeem, L. Zhang, J. Ishioka, T. Shibayama, T. Iwasaki, T. Kato, S. Watanabe, Nano Lett. 17, 3 (2017)

    Article  Google Scholar 

  14. R.K. Raghava, S.B. Cheol, C.H. Yoo, P. Wonjung, R.K. Sun, L.J. Shin, S. Daewon, L. Youngil, Scripta Mater. 58, 1010 (2008)

    Article  Google Scholar 

  15. R.K. Raghava, K.P. Lee, A.I. Gopalan, J. Nanosci. Nanotechnol. 7, 3117 (2007)

    Article  Google Scholar 

  16. R.K. Raghava, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3692 (2011)

    Article  Google Scholar 

  17. R.K. Raghava, V.G. Gomes, M. Hassan, Mater. Res. Expr. 1, 015012 (2014)

    Article  Google Scholar 

  18. C. Murat, K.R. Reddy, A.M. Fernando, Chem. Eng. J. 309, 151 (2017)

    Article  Google Scholar 

  19. M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, G.V. Gomes, Nanoscale 6, 11988 (2014)

    Article  Google Scholar 

  20. R.K. Raghava, K.P. Lee, A.I. Gopalan, Colloids Surf. A 320, 49 (2008)

    Article  Google Scholar 

  21. F. Jin, H. Zhang, X. Chen, X. Liu, Q. Chen, J. Sol-Gel Sci. Technol. 81, 177 (2017)

    Article  Google Scholar 

  22. J. Ma, Y. Cai, W. Wang, Q. Cui, M. Theingi, H. Zhang, Ceram. Int. 40, 4963 (2014)

    Article  Google Scholar 

  23. M. Eshraghi, P. Kameli, F. Khalili, M.H. Ehsani, H. Salamati, J. Rare Earths 32, 965 (2014)

    Article  Google Scholar 

  24. S. Das, T.K. Dey, Solid State Commun. 134, 837 (2005)

    Article  Google Scholar 

  25. C. Boudaya, L. Laroussi, E. Dhahri, J.C. Joubert, A. Cheikhrouhou, J. Phys. Condens. Mat. 10, 7485 (1998)

    Article  Google Scholar 

  26. G.H. Rao, J.R. Sun, K. Bärner, N. Hamad, J. Phys. Condens. Mat. 11, 1523 (1999)

    Article  Google Scholar 

  27. F.C. Fonseca, J.A. Souza, R.F. Jardim, R. Muccillo, E.N.S. Muccillo, D. Gouvea, M.H. Jung, A.H. Lacerda, J. Eur. Ceram. Soc. 24, 1271 (2004)

    Article  Google Scholar 

  28. X. Xu, J. Bullock, L.T. Schelhas, E.Z. Stutz, J.J. Fonseca, M. Hettick, V.L. Pool, K.F. Tai, M.F. Toney, X. Fang, A. Javey, L.H. Wong, J.W. Ager, Nano Lett. 16, 1925 (2016)

    Article  Google Scholar 

  29. R.K. Raghava, L.K. Pill, L. Youngil, G.A. Iyengar, Mater. Lett. 62, 1815 (2008)

    Article  Google Scholar 

  30. R.K. Raghava, S.B. Cheol, R.K. Sun, N. Jaegeun, L. Youngil, Synth. Met. 159, 1934 (2009)

    Article  Google Scholar 

  31. K.L. Yanapu, S.S. Samatham, D. Kumar, V. Ganesan, P.V. Reddy, Appl. Phys. A 122, 1 (2016)

    Article  Google Scholar 

  32. S. Hcini, S. Khadhraoui, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, M. Oumezzine, J. Supercond. Novel Magn. 26, 2181 (2013)

    Article  Google Scholar 

  33. S.P. Schiffer, A.P. Ramirez W. Bao, S.W. Cheong, Phys. Rev. Lett. 75, 3336 (1995)

    Article  Google Scholar 

  34. E.S. Vlakhov, R.A. Chakalov, R.I. Chakalova, K.A. Nenkov, K. Dorr, A. Handstein, K.H. Muller, J. Appl. Phys. 83, 2152 (1998)

    Article  Google Scholar 

  35. H. Ahmed, S. Khan, W. Khan, R. Nongjai, I. Khan, J. Alloys Compd. 563, 12 (2013)

    Article  Google Scholar 

  36. T. Holstein, Ann. Phys. 8, 343 (1959)

    Article  Google Scholar 

  37. Y.K. Lakshmi, P.V. Reddy, J. Alloys Compd. 470, 67 (2009)

    Article  Google Scholar 

  38. D. Varshney, N. Dodiya, J. Theor. Appl. Phys. 9, 45 (2014)

    Article  Google Scholar 

  39. S.A. Ahmed, J. Magn. Magn. Mater. 340, 131 (2013)

    Article  Google Scholar 

  40. T. Nakajima, Y. Ueda, J. Alloys Compd. 383, 135 (2014)

    Article  Google Scholar 

  41. S.O. Manjunatha, A. Rao, V.P.S. Awana, G.S. Okram, J. Magn. Magn. Mater. 394, 130 (2015)

    Article  Google Scholar 

  42. S.O. Manjunatha, A. Rao, T.Y. Lin, C.M. Chang, Y.K. Kuo, J. Alloys Compd. 619, 303 (2015)

    Article  Google Scholar 

  43. S. Bhattacharya, S. Pal, R.K. Mukherjee, B.K. Chaudhuri, S. Neeleshwar, Y.Y. Chen, S. Mollah, H.D. Yang, J. Magn. Magn. Mater. 269, 359 (2004)

    Article  Google Scholar 

  44. S.T. Yazdi, P. Iranmanesh, J. Magn. Magn. Mater. 365, 100 (2014)

    Article  Google Scholar 

  45. T.D. Thanh, L.H. Nguyen, D.H. Manh, N.V. Chien, P.T. Phong, N.V. Khiem, L.V. Hong, N.X. Phuc, Phys. B 407, 145 (2012)

    Article  Google Scholar 

  46. F. Yonglai, Appl. Phys. Lett. 77, 118 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 11564021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Chen, Q., Li, Z. et al. Structure, electrical and magnetic properties of La0.67Ca0.33−x K x MnO3 polycrystalline ceramic. J Mater Sci: Mater Electron 29, 1808–1816 (2018). https://doi.org/10.1007/s10854-017-8089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8089-6

Navigation