Skip to main content
Log in

PPy/TiO2(np)/CNT polymer nanocomposite material for microwave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PPy/TiO2(np)/CNT nanocomposites are synthesized by ‘chemical oxidative polymerization’ of pyrrole. It is observed that polypyrrole along with TiO2(np) form core shell structure. The microwave measurements such as permittivity, permeability and reflection losses (metal back) are studied at X-band. Minimum reflection loss of microwave is due to dielectric loss in the nanocomposite and is − 51.11 dB (99.99%) at 8.64 GHz for sample (PPy/TiO2(np)/CNT) of thickness 3 mm. The nanocomposite is characterized by FESEM and XRD. The particle size of the TiO2(np) is found to be ranging from 60 to 150 nm. The average crystallite size is determined by Scherrer formula and is found to be 26 nm. We have observed negative value of µ″ (complex part of permeability) for the entire frequency range (8–12 GHz). In our study we also observed the resonance–antiresonance phenomenon in all the samples. We have also seen maximum attenuation of microwave for PPy/TiO2(np)/CNT polymer nanocomposite. The synthesized nanocomposites can be used for metamaterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.C. Tiwari, P. Artri, R. Sharma, Dielectric and electrical modulus study of PPy/TiO2/CNT/SLS composite with temperature. AIP Conf. Proc. 1512, 170–171 (2003)

    Google Scholar 

  2. A. Ohlan, K. Singh, A. Chandra, V.N. Singh, S.K. Dhawan, Conjugated polymer nanocomposites: synthesis, dielectric, and microwave absorption studies. J. Appl. Phys. 106, 044305 (2009)

    Article  Google Scholar 

  3. K. Naisadham, P. Chandrasekhar, Measurement of broadband microwave absorption and shielding of conducting polymer. Microwave Symposium Digest, IEEE MTT-S International, 1998/(18)

  4. D.C. Tiwari, P.B. Patil, R. Sharma, D. Singh, S.P. Singh, Microwave. in Proceedings of the DAE 52th, Solid State Physics, 2007 pp. 435–436

  5. P. Siani, V. Chaoudhary, Conducting polymer coating textile based multilayered shields for suppression of microwave radiation in 8.2–12.3 GHz range. J. Appl. Polym. Sci. (2013). doi:10.1002/APP.38994.

    Google Scholar 

  6. J. Luo, D. Gao, Synthesis and microwave absorption properties of PPy/Co nanocomposites. J. Magn. Magn. Mater. 368, 82–86 (2014)

    Article  Google Scholar 

  7. M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Well-define core-shell Fe3O4@polypyrrole composite microspheres with tunable shell thickness: synthesis and their superior microwave absorption performance in Ku band. Ind. Eng. Chem. Res. 55, 6263–6275 (2016)

    Article  Google Scholar 

  8. T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She, J. Wang, T. Li, Z. Liu, B. Wei, Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. (2014). doi:10.1038/srep05619

    Google Scholar 

  9. R. Panigrahi, S.K. Srivastava, Trapping of microwave radiation in hollow polyprrole microsphere through enhanced internal reflection: a novel approach. Sci. Rep. 5, 7638 (2015)

    Article  Google Scholar 

  10. Z. Li, M. Ye, A. Han, H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composite with conductive polymer. J. Mater. Sci. 27, 1031–1043 (2016)

    Google Scholar 

  11. K. Li, J. Xu, X. Yan, L. Liu, X. Chen, Y. Luo, J. He, D.Z. Shen, The origin of the strong microwave absorption in black TiO2. Appl. Phys. Lett. 108, 183102 (2016)

    Article  Google Scholar 

  12. W. Jiang, M. Sun, K. Zhang, F. Wu, A. Xie, M. Wang, Three-dimensional (3D) α-Fe2O3/polypyrrole (PPy) nanocomposite for effective electromagnetic absorption. AIP Adv. 6, 065021 (2016)

    Article  Google Scholar 

  13. J. Jin, J. Song, S. Deng, G. Li, Synthesis and microwave absorbing of flake-like polypyrrole filled composite in X-band. Polym. Compos. 37, 533–538 (2016)

    Article  Google Scholar 

  14. X. Sun et al., Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C1, 765–777, (2013)

    Google Scholar 

  15. H. Zhang, A. Xie, C. Wang, Y. Shen, X.-Y. Tian, Room temperature fabrication of RGO/Fe3O4 composite hydrogel and their excellent wave absorption properties. RCS Adv. 4, 14441–14446 (2014)

    Google Scholar 

  16. P.C. Watts, W.K. Hsu, A. Barnes, B. Chambers, High permittivity from defective multiwall carbon nanotubes in the X-band. Adv. Mater. 15, 600–603 (2003)

    Article  Google Scholar 

  17. F. Ma, Y. Qin, Y.Z. Li, Enhanced microwave performance Cobalt nanoflakes with strong shape anisotropic. J. Appl. Phy. Lett. 96, 202507 (2010)

    Article  Google Scholar 

  18. Z. Ma et al., Analyses of multiple resonance on multiple resonance behaviors and microwave reflection loss in magnetic Co microflowers. Phys. Status Solid B 249, 575–580 (2012)

    Article  Google Scholar 

  19. Y. Yang, C.L. Xu, Y.X. Xia, T. Wang, F.S. Li, Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloys Compd. 493, 549 (2010)

    Article  Google Scholar 

  20. T. Koshny, P. Markoš, D.R. Smith, C.M. Soukoulis, Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E 68, 065602 (2003)

    Article  Google Scholar 

  21. L. Zhen, J.T. Jiang, W.Z. Shao, C.Y. Xu, Resonance-antiresonance electromagnetic behavior in a disordered dielectric composite. J. Appl. Phys. Lett. 90, 142907 (2007)

    Article  Google Scholar 

  22. S.J. Yan, C.Y. Xu, J.T. Jiang, D.B. Liu, Z.Y. Wang, J. Tang, L. Zhen, Strong dual-frequency electromagnetic absorption in Ku-band of C@GeNi3 core/shell structure microchains with negative permeability. J. Magn. Magn. Mater. 349, 159–164

  23. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 2002)

    Google Scholar 

  24. P. Markos, C.M. Soukoulis, Transmission properties and effective electromangnetic parameters of double negative metamaterials. Opt. Express 11, 649–661 (2003)

    Article  Google Scholar 

  25. V.A. Markel, Can the imaginary part of permeability be negative?. Phys. Rev. 78, 026608 (2008)

    Google Scholar 

  26. A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, L. Samwer, Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range. Phys. Rev. Lett. 98, 197401 (2007)

    Article  Google Scholar 

  27. J.V. Mantese, A.L. Micheli, D.F. Dungan, R.G. Geyer, J.B. Jarvis, J. Grosvenor, Applicability of effective medium theory to ferroelectric/ferrimagnetic composites with composition and frequency-dependent complex permittivities and permeabilities. J. Appl. Phys. 79, 1655 (1996)

    Article  Google Scholar 

  28. M. Matsumoto, Y. Miyata, Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin film magnetic metal particle. IEEE Trans. Magn. 33, 4459–4464 (1997)

    Article  Google Scholar 

  29. T. Inui, K. Konishi, Fabrication of broad-band RF-absorber composite of planar hexagonal ferrites. IEEE Magn. 35, 3148–3150 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank MPCST, Bhopal (Project No. A/RD/RP-2/2013-14/214) and RUSA, Jiwaji University, Gwalior for providing research grant, DMSRDE Kanpur for microwave studies and Center for Nanosciences and Nanotechnology, IIT Kanpur for characterization of the sample.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. C. Tiwari or Pukhrambam Dipak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, D.C., Dipak, P., Dwivedi, S.K. et al. PPy/TiO2(np)/CNT polymer nanocomposite material for microwave absorption. J Mater Sci: Mater Electron 29, 1643–1650 (2018). https://doi.org/10.1007/s10854-017-8076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8076-y

Navigation