Advertisement

C10H8N2-PPy hybrid flexible electrodes: SILAR synthesis and electrochemical study

  • A. V. Thakur
  • B. J. Lokhande
Article

Abstract

2,2′-bipyridine has been significantly focused by researchers because of its electrical conductivity, chelating properties and ability to affect the color and electrochemical properties of the materials. In present work, 2,2′-bipyridine:polypyrrole (C10H8N2:PPy) hybrid flexible electrodes (HFE) have been fabricated by successive ionic layer adsorption and reaction technique using 0.1 M solution of pyrrole (Py) acidified with 0.1 M HClO4 and 30 wt% H2O2 at 366.15 K. XRD pattern of the HFE exhibits characteristic broad peak at 2θ angles 22.35° and 23.09° as well as at 27ο are indicating the formation of bipyridine as well as PPy respectively. The characteristic peak at 1559 cm−1 in the FTIR spectrum is due to pyrrole ring vibrations confirms the formation of PPy. The SEM image of HFE with 30 s dipping time each in pyrrole and H2O2, depicts flesh like morphology with interconnected globules. The contact angle ~ 10° indicate hydrophilic nature of HFE. Cyclic voltammetric (CV) analysis and galvanostatic charge discharge (GCD) have been carried out in 0.5 M H2SO4. The CV curves represent the symmetric and reversible nature at lower scan rate which becomes quasi irreversible and asymmetric at higher scan rates. The observed maximum specific capacitance was 281.49 F/g at 5 mV/s which is nearly same as given by GCD which was 209 F/g at 1 mA/cm2. These HFE are useful for high energy supercapacitors and battery applications.

Notes

Acknowledgements

Authors are thankful to Solapur University, Solapur for the provision of DRF.

References

  1. 1.
    G. Wu, Y. Wang, K. Wang, A. Feng, The effect of modified AlN on thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv. 6, 102542–102548 (2016)CrossRefGoogle Scholar
  2. 2.
    G. Wu, Y. Cheng, K. Wang, Y. Wang, Fabrication and characterization of OMMt/BMI/CE composite with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci: Mater. Electron. 27(6), 5592–55999 (2016)Google Scholar
  3. 3.
    M. Li, X. Cao, S. Zhang, S. Qi, Ternary composite RGO/MoS2/Fe3O4: synthesis and enhanced electromagnetic wave absorbing performance. J. Mater. Sci: Mater. Electron. 28(9), 6544–6551 (2017)Google Scholar
  4. 4.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ Fe2O3@ carbon nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015). doi: 10.1016/J.Jalcom.2015.08.236 CrossRefGoogle Scholar
  5. 5.
    G.M. Vidyasagar, S.D. Sonawane, K.P. Rao, A.V. Thakur, B.J. Lokhande, Biosynthesis of Ag:C20H9ClO5Ag:Carbon using Opuntial cochenillifera fruit extract and its electrochemical study for antioxidant activity. in Proceedings of IEEE-IC2N conference, Pune, 9–11 Oct 2017. ISBN 978-93-86831-90-3Google Scholar
  6. 6.
    A.V. Thakur, B.J. Lokhande, Effect of number of SILAR cycles on cyclic voltammetric performance of PPy:CoO(OH) flexible hybrid electrodes prepared using pyrrole and Co(NO3)2. in Proceedings of IEEE-IC2N conference, Pune 3–6 Oct 2017. ISBN 978-93-86831-90-3Google Scholar
  7. 7.
    A. Davies, P. Audette, B. Farrow, F. Hassan, Z. Chen, J.Y. Choi, A. Yu, Graphene based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J. Phys. Chem. C 115, 17612 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Shi, I. Zhitomirsky, Electrodeposition and capacitive behavior of films for electrodes of electrochemical supercapacitors. Nanoscale Res. Lett. 5, 518–523 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Rudge, J. Davey, I. Raistrick, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89–107 (1994)CrossRefGoogle Scholar
  10. 10.
    T. Shoa, J.D. Madden, C.E. Fok, T. MirfaKhari, Rate limits in conducting polymers. Adv. Sci. Technol. 61, 26–33 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Sakthivel, A. Boopathi, Synthesis and study of polypyrrole thin films by silar method. J. Chem. Chem. Sci. 4(3), 144–149 (2014)Google Scholar
  12. 12.
    Z. Liu, Y. Liu, S. Poyraz, X. Zhang, Green-nano approach to nanostructured polypyrrole. Chem. Commun. 47, 4421–4423 (2011). doi: 10.1039/C1CC10208G CrossRefGoogle Scholar
  13. 13.
    Y. Tan, K. Ghandi, Kinetics and mechanism of pyrrole chemical polymerization. Synth. Met. 175, 183–191 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Chen, I. Zhitomirsky, Capacitive behavior of polypyrrole prepared by electrochemical and chemical methods. Mater. Lett. 125, 92–95 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Shinde, G. Gund, V. Kumbhar, B. Patil, C.D. Lokhande, Novel chemical synthesis of polypyrrole thin film electrodes for supercapacitor application. Eur. Polym. J. 49, 3734–3739 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Yuan, C. Wan, L. Zhao, Facial in-situ synthesis of MnO2/PPy composite for supercapacitor. Int. J. Electrochem. Sci. 10, 9456–9465 (2015)Google Scholar
  17. 17.
    A.V. Thakur, B.J. Lokhande, Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu(OH)2 hybrid electrodes for supercapacitors. J. Solid State Electrochem. (2016). doi: 10.1007/s10008-016-3502-2 Google Scholar
  18. 18.
    A.V. Thakur, B.J. Lokhande, Effect of dip time on the electrochemical behavior of PPy-Cu(OH)2 hybrid electrodes synthesized using pyrrole and CuSO4. e-Polymer 17(2) 167–173 (2016). doi: 10.1515/epoly-2016-0160 Google Scholar
  19. 19.
    Y. Chen, J. Zhou, P. Maguire, R. O’Connell, W. Schmitt, Y. Li, Z. Yan, Y. Zhang, H. Zhang, Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation. Sci. Rep. 6, 20704 (2016). doi: 10.1038/srep20704
  20. 20.
    H. Wei, C. He, J. Liu, H. Gu, Y. Wang, X. Yan, J. Guo, D. Ding, N.Z. Shen, X. Wang, S. Wei, Z. Guoa, Electropolymerized polypyrrole nanocomposites with cobalt oxide coated on carbon paper for electrochemical energy storage. Polymer 67. 192–199 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Dong, L. Peng, D. Liu, Q. Yang, T. Huang, Design synthesis of polypyrrole–Co3O4 hybrid material for the direct electrochemistry of hemoglobin and glucose oxidase. Bioelectrochemistry 98, 87–93 (2014)CrossRefGoogle Scholar
  22. 22.
    Z.L. Wang, X.-J. He, S.H. Ye, Y.X. Tong, G.R. Li, Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Appl. Mater. Interfaces 6, 642–647 (2014)CrossRefGoogle Scholar
  23. 23.
    V.S. Sangawar, N.A. Moharil, Study of electrical, thermal and optical behavior of polypyrrole filled PVC:PMMA thin film thermoelectrets. Chem. Sci. Trans. 1(2), 447–455 (2012). doi: 10.7598/cst2012.192 CrossRefGoogle Scholar
  24. 24.
    B. Gao, D. He, B. Yan, H. Suo, C. Zhao, Flexible carbon cloth based polypyrrole for an electrochemical supercapacitor. J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-015-3225-7 Google Scholar
  25. 25.
    P.A. Basnayaka, M.K. Ram, L. Stefanakos, A. Kumar, Graphene/polypyrrole nanocomposite as electrochemical supercapacitor electrode: electrochemical Impedance studies. Graphene, 2, 81–87 (2013). doi: 10.4236/graphene.2013.22012 CrossRefGoogle Scholar
  26. 26.
    C. Kaes, A. Katz, M.W. Hosseini, Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2′-bipyridine units. Chem. Rev. 100, 3553 (2000)CrossRefGoogle Scholar
  27. 27.
    L. Oresmaa, M. Haukka, P. Vainiotalo, T.A. Pakkanen, Ab initio calculations and mass spectrometric determination of the gas-phase proton affinities of 4,4′-disubstituted 2,2′-bipyridines. J. Org. Chem. 67, 8216 (2002)CrossRefGoogle Scholar
  28. 28.
    J.F. Pan, Z.-K. Chen, S.-J. Chua, W. Huang, Protonation of bipyridines and their vinylene−phenylene−vinylene derivatives: theoretical analysis of the positive charge effects. J. Phys. Chem. A 105, 8775 (2001)CrossRefGoogle Scholar
  29. 29.
    L. Li, S. Wang, D. Hui, J. Qiu, Ordered multiphase polymer nanohybrids for high-performance solid-state supercapacitors. Composites B 71, 40–44 (2015)CrossRefGoogle Scholar
  30. 30.
    T. An, J. Seong, W.S. Cho, G. Choi, Lim, Preparation of stable superhydrophobic mesh with a biomimetic hierarchical structure. Soft Matter 7(21), 9867–9870 (2011)CrossRefGoogle Scholar
  31. 31.
    G. Wu, H. Wu, K. Wang, C. Zhang, Y. Wang, A. Feng, Facile synthesis and application of multi shelled SnO2 hollow spheres in lithium ion batteries. RSC Adv. 6(63), 58069–58076 (2016)CrossRefGoogle Scholar
  32. 32.
    A.V. Thakur, B.J. Lokhande, Electrolytic anion affected charge storage mechanisms of Fe3O4 flexible thin film electrode in KCl and KOH: a comparative study by cyclic voltammetry and galvanostatic charge–discharge. J. Mater. Sci: Mater. Electron. (2017) doi: 10.1007/s10854-017-6980-9 Google Scholar
  33. 33.
    S. Choudhari, D. Bhattacharya, J.-s. Yu, 1-Dimensional porous α Fe2O3 nanorods as high performance electrode material for supercapacitor. RSC Adv. 3, 25120 (2013). doi: 10.1039/c3ra44159h CrossRefGoogle Scholar
  34. 34.
    P. Lemon, J. Haigh, The evolution of nodular polypyrrole morphology during aqueous electrolytic deposition: influence of electrolyte gas discharge. Mater. Res. Bull. 34(5), 665–672 (1999). doi: 10.1016/S0025-5408(99)00069-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Lab of Electrochemical Studies, School of Physical SciencesSolapur UniversitySolapurIndia

Personalised recommendations