Improved microwave dielectric properties of anti-reduction Ba4(Ce0.5Sm0.5)9.3Ti18−zAlzO54 ceramics sintered in nitrogen atmosphere

Abstract

Ba4(Ce0.5Sm0.5)9.3Ti18−z Al z O54 (BCSTA, z = 0, 0.25, 0.50, 0.75, 1.00) ceramics sintered in nitrogen atmosphere were prepared by the conventional solid state reaction. The effects of Al3+ substitution for Ti4+ on microstructure and microwave dielectric properties in BCSTA ceramics have been investigated. X-ray diffraction spectra revealed only a single tungsten bronze in all the samples from z = 0 to z = 1.00 and backscatter electronic images confirmed a second BaAl2Ti5O14 phase at z > 0.50. Besides, XPS results indicated that the incorporation of Al3+ suppressed the reduction of Ti4+, which leaded to the microwave dielectric properties such as Q × f and τ f value improvement in BCSTA ceramics. Typically, the optimum combination of microwave dielectric properties: Q × f ∼ 8401.76 GHz, ε r  ∼ 71.68, and τ f  ∼ +4.37 ppm/°C were obtained at z = 0.50 in BCSTA ceramics sintered in nitrogen atmosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    R.J. Cava, J. Mater. Chem. 11, 54 (2001)

    Article  Google Scholar 

  2. 2.

    H. Ohsato, M. Mizuta, T. Okuda, J. Ceram. Soc. Jpn. 106, 178 (1998)

    Article  Google Scholar 

  3. 3.

    S.Y. Wu, Y. Li, X.M. Chen, J. Phys. Chem. Solids 64, 2365 (2003)

    Article  Google Scholar 

  4. 4.

    H. Ohsato, J. Eur. Ceram. Soc. 21, 2703 (2001)

    Article  Google Scholar 

  5. 5.

    H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42, 1 (2003)

    Article  Google Scholar 

  6. 6.

    J.X. Gao, X.H. Wang, M.J. Wang, and et al, J. Mater. Sci. 27, 5954 (2016)

    Google Scholar 

  7. 7.

    R.C. Pullar, S.J. Penn, J. Eur. Ceram. Soc. 29, 419 (2009)

    Article  Google Scholar 

  8. 8.

    X.G. Yao, H.X. Lin, W. Chen, and et al, Ceram. Int. 38, 3011 (2012)

    Article  Google Scholar 

  9. 9.

    Y. Ota, K.I. Kakimoto, H. Ohsato, and et al, J. Eur. Ceram. Soc. 24, 1755 (2004)

    Article  Google Scholar 

  10. 10.

    B. Tang, Z. Xiong, H. Li, and et al, J. Mater. Sci. 26, 8017 (2015)

    Google Scholar 

  11. 11.

    M.C. Wu, M.K. Hsieh, C.W. Yen, and et al, J. Eur. Ceram. Soc. 27, 2835 (2007)

    Article  Google Scholar 

  12. 12.

    J. Tao, M.L. Mu, X.H. Wang et al., J. Mater. Sci. 1–7 (2017)

  13. 13.

    H. Ohsato, T. Ohhashi, S. Nishigaki et al., Jpn. J. Appl. Phys. 32, 4323 (1993)

    Article  Google Scholar 

  14. 14.

    R. Ubic, I.M. Reaney, W.E. Lee et al., Mat. Res. Soc. Symp. Proc. 453, 495 (1997)

    Article  Google Scholar 

  15. 15.

    K.H. Yoon, W.S. Kim, E.S. Kim, Mater. Sci. Eng. 99, 112 (2003)

    Article  Google Scholar 

  16. 16.

    X. Wang, J.H. Luo, H. Guan, and et al, J. Mater. Sci. 28, 10338 (2017)

    Google Scholar 

  17. 17.

    M. Mizuta, K. Uenoyama, H. Ohsato et al., Jpn. J. Appl. Phys. 35, 5065 (1996)

    Article  Google Scholar 

  18. 18.

    Z. Xiong, B. Tang, Z.X. Fang et al., J. Alloys Compd. 723, 580 (2017)

    Article  Google Scholar 

  19. 19.

    A. Templeton, X.R. Wang, S.J. Penn et al., J. Am. Ceram. Soc. 83, 95 (2000)

    Article  Google Scholar 

  20. 20.

    H.T. Chen, B. Tang, A.Q. Cao, and et al, J. Mater. Sci. 26, 405 (2015)

    Google Scholar 

  21. 21.

    Z.X. Fang, B. Tang, F. Si et al., J. Alloys Compd. 693, 843 (2017)

    Article  Google Scholar 

  22. 22.

    B.W. Hakki, P.D. Coleman, Ire. Trans. Micro. Theory Technpl. 8, 402 (1960)

    Article  Google Scholar 

  23. 23.

    W.D. Cai, F. Chen, X.X. Shen, and et al, Appl. Catal. B 101, 160 (2010)

    Article  Google Scholar 

  24. 24.

    R.D. Shannon, Acta. Cryst 32, 751 (1976)

    Article  Google Scholar 

  25. 25.

    X.G. Yao, H.X. Lin, X.Y. Zhao et al., Ceram. Int. 38, 6723 (2012)

    Article  Google Scholar 

  26. 26.

    H. Borchert, Y.V. Frolova, V.V. Kaichev et al., J. Phys. Chem. B 109, 5728 (2005)

    Article  Google Scholar 

  27. 27.

    X.G. Yao, W. Chen, L. Luo, Adv. Mater. Chem. 2, 28 (2012)

    Article  Google Scholar 

  28. 28.

    X.M. Chen, Y. Li, J. Am. Ceram. Soc. 85, 579 (2002)

    Article  Google Scholar 

  29. 29.

    H. Takahashi, Y. Baba, K. Ezaki et al., Jpn. J. Appl. Phys. 30, 2339 (1991)

    Article  Google Scholar 

  30. 30.

    P.K. Davies, J. Tong, T. Negas, J. Am. Ceram. Soc. 80, 1727 (1997)

    Article  Google Scholar 

  31. 31.

    P.J. Harrop, J. Mater. Sci. 4, 370 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51302093). The authors are grateful to the Analytical and Testing Center, Huazhong University of Science and Technology, for the XPS analyses. And the authors appreciate the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, for the field-emission scanning electron microscope examination.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, J., Mu, M., Wang, X. et al. Improved microwave dielectric properties of anti-reduction Ba4(Ce0.5Sm0.5)9.3Ti18−zAlzO54 ceramics sintered in nitrogen atmosphere. J Mater Sci: Mater Electron 29, 1392–1398 (2018). https://doi.org/10.1007/s10854-017-8046-4

Download citation