Skip to main content
Log in

Annealing temperature dependent structures and properties of ferromagnetic Fe3Si films fabricated by resistive thermal evaporation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe3Si films were fabricated on quartz substrates using resistive thermal evaporation technique and the influence of annealing temperature on structures and properties of these films were investigated. XRD results show that the single phase Fe3Si films have been obtained at annealing temperature ranging from 850 to 950 °C. The structure of Fe3Si films transforms from body centered cubic to face centered cubic structure with the increase of annealing temperature. SEM images reveal that the particle sizes of these polycrystalline films are about 1–3 μm in dimension with island-like feature, and then a drastic change in the appearance with flake-like feature occurs at 950 °C. The electrical resistivity first increases with increasing annealing temperature reaching a maximum at 900 °C and then rapidly decreases. It implies the further diffusion between Fe and Si atoms and atomic rearrangements toward a more ordered structure. The magnetization curves exhibit that all the films are ferromagnetic at room temperature. This in-plane magnetic anisotropy plus the sharp anisotropy make easy magnetization of these films parallel to the film surface. The face centered cubic structure Fe3Si film at 950 °C shows a high M s value of ~972 emu/cm3 and a small H c value of ~9 Oe, close to the bulk value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.D. Sarma, J. Fabian, X. Hu, I. Zutic, Spin electronics and spin computation. Solid State Commun. 119, 207–215 (2001)

    Article  Google Scholar 

  2. S.H. Liou, S.S. Malhotra, J.X. Shen, M. Hong, J. Kwo, H.S. Chen, J.P. Mannaerts, Magnetic properties of epitaxial single crystal ultrathin Fe3Si films on GaAs (001). J. Appl. Phys. 73, 6766–6768 (1993)

    Article  Google Scholar 

  3. R. Nakane, M. Tanaka, S. Sugahara, Preparation and characterization of ferromagnetic DO3-phase Fe3Si thin films on silicon-on-insulator substrates for Si-based spin-electronic device applications. Appl. Phys. Lett. 89, 1925031–1925033 (2006)

    Article  Google Scholar 

  4. J. Kudrnovsky, N.E. Christensen, O.K. Andersen, Electronic structures and magnetic moments of Fe3+ySi1−y and Fe3−xVxSi alloys with DO3-derived structure. Phys. Rev. B 43, 5924–5933 (1991)

    Article  Google Scholar 

  5. Y. Ando, K. Kasahara, K. Yamane, K. Hamaya, K. Sawano, T. Kimura, M. Miyao, Comparison of nonlocal and local magnetoresistance signals in laterally fabricated Fe3Si/Si spin-valve devices. Appl. Phys. Express 3, 0930011–0930013 (2010)

    Article  Google Scholar 

  6. Y. Asai, K. Sakai, K. Ishibashi, K. Takeda, T. Yoshitake, Fabrication of spin valve junctions based on Fe3Si/FeSi2/Fe3Si trilayered films. Int. Conf. Summer Sch. Adv. Silicide Technol. 3, 0115011–0115015 (2015)

    Google Scholar 

  7. K. Harada, K.S. Makabe, H. Akinaga, T. Suemasu, Room temperature magnetoresistance in Fe3Si/CaF2/Fe3Si MTJ epitaxially grown on Si(111). J. Phys. 266, 0120881–0120885 (2011)

    Google Scholar 

  8. L.L. Tao, S.H. Liang, D.P. Liu, H.X. Wei, J. Wang, X.F. Han, Tunneling magnetoresistance in Fe3Si/MgO/Fe3Si(001) magnetic tunnel junctions. Appl. Phys. Lett. 104, 1724061–1724065 (2014)

    Google Scholar 

  9. A. Kawaharazuka, M. Ramsteiner, J. Herfort, H.P. Schönherr, H. Kostial, K.H. Ploog, Spin injection from Fe3Si into GaAs. Appl. Phys. Lett. 85(16), 3492–3494 (2004)

    Article  Google Scholar 

  10. J. Herfort, H.P. Schönherr, K.H. Ploog, Epitaxial growth of Fe3Si/GaAs(001) hybrid structures. Appl. Phys. Lett. 83, 3912–3914 (2003)

    Article  Google Scholar 

  11. J. Herfort, H.P. Schönherr, K.J. Friedland, K.H. Ploog, Structural and magnetic properties of epitaxial Fe3Si/GaAs(001) hybrid structures. J. Vac. Sci. Technol. B 22, 2073–2078 (2004)

    Article  Google Scholar 

  12. A. Ionescu, C.A.F. Vaz, T. Trypiniotis, C.M. Gurtler, M.E. Vickers, H. Garcia-Miquel, J.A.C. Bland, Magnetic and structural properties of stoichiometric thin Fe3Si/GaAs(001) films. J. Magn. Magn. Mater. 286, 72–76 (2005)

    Article  Google Scholar 

  13. K. Kobayashi, T. Sunohara, M. Umada, H. Yanagihara, E. Kita, T. Suemasu, Epitaxial growth of Fe3Si/CaF2/Si(111) hybrid structures by molecular beam epitaxy. Thin Solid Films 508, 78–81 (2006)

    Article  Google Scholar 

  14. K. Ueda, R. Kizuka, H. Takeuchi, A. Kenjo, T. Sadoh, M. Miyao, Influence of substrate orientation on low-temperature epitaxial growth of ferromagnetic silicide Fe3Si on Si. Thin Solid Films 515, 8250–8253 (2007)

    Article  Google Scholar 

  15. K. Hamaya, K. Ueda, K. Kasahara, Y. Ando, T. Sadoh, M. Miyao, Epitaxial ferromagnetic Fe3Si/Si(111) structures with high-quality heterointerfaces. Appl. Phys. Lett. 93, 1321171–1321173 (2008)

    Google Scholar 

  16. T. Sadoh, M. Kumano, R. Kizuka, K. Ueda, A. Kenjo, M. Miyao, Atomically controlled molecular beam epitaxy of ferromagnetic silicide Fe3Si on Ge. Appl. Phys. Lett. 89, 1825111–1825113 (2006)

    Google Scholar 

  17. M. Miyao, K. Hamaya, T. Sadoh, H. Itoh, Y. Maeda, Molecular beam epitaxial growth of ferromagnetic Heusler alloys for group-IV semiconductor spintronic devices. Thin Solid Films 518, S273–S277 (2010)

    Article  Google Scholar 

  18. K. Hamaya, T. Murakami, S. Yamada, K. Mibu, M. Miyao, Local structural ordering in low-temperature-grown epitaxial Fe3+xSi1−x films on Ge(111). Phys. Rev. B 83, 1444111–1444116 (2011)

    Article  Google Scholar 

  19. D. Nakagauchi, T. Yoshitake, K. Nagayama, Fabrication of ferromagnetic Fe3Si thin films by pulsed laser deposition using an Fe3Si target. Vacuum 74, 653–657 (2004)

    Article  Google Scholar 

  20. F. Lin, D. Jiang, X. Ma, W. Shi, Structural order and magnetic properties of Fe3Si/Si(100) heterostructures grown by pulsed-laser deposition. Thin Solid Films 515, 5353–5356 (2007)

    Article  Google Scholar 

  21. M. Miyazaki, M. Ichikawa, T. Komatsu, K. Matusita, Formation and electronic state of DO3-type ordered structure in sputtered Fe–Si thin films. J. Appl. Phys. 71, 2368–2374 (1992)

    Article  Google Scholar 

  22. T. Yoshitake, D. Nakagauchi, T. Ogawa, M. Itakura, N. Kuwano, Y. Tomokiyo, T. Kajiwara, K. Nagayama, Room-temperature epitaxial growth of ferromagnetic Fe3Si films on Si(111) by facing target direct-current sputtering. Appl. Phys. Lett. 86, 2625051–2625053 (2005)

    Article  Google Scholar 

  23. K. Akiyama, T. Kadowaki, S. Kaneko, A. Kyoduka, Y. Sawada, H. Funakubo, Epitaxial growth of (100) Fe3Si thin films on insulating substrates. J. Cryst. Growth 310, 1703–1707 (2008)

    Article  Google Scholar 

  24. Y. Jing, Y. Xu, J.P. Wang, Fabrication of Heusler Fe3Si nanoparticles. J. Appl. Phys. 105, 07B5201–07B5203 (2009)

    Article  Google Scholar 

  25. S.L. Liew, D.H.L. Seng, H.R. Tan, D. Chi, Structural and ferromagnetic response of Fe3Si thin films on Si(001) to sputter-deposition rate and post-deposition annealing. J. Phys. D 42, 1050061–1050065 (2009)

    Article  Google Scholar 

  26. M. Polcarova, K. Godwod, J. Bak-Misiuk, S. Kadeckova, J. Bradler, Lattice parameters of Fe–Si alloy single crystals. Phys. Status Solidi A 106, 17–23 (1988)

    Article  Google Scholar 

  27. M.I. Novgorodova, R.G. Yusupov, M.T. Dmitrieva, A.I. Tsepin, A.V. Sivtsov, A.I. Gorshkov, V.V. Korovushkin, N.Y. Yakubovskaya, First occurrence of Suessite on the earth. Int. Geol. Rev. 26, 98–101 (1984)

    Article  Google Scholar 

  28. K. Keil, J.L. Berkley, L.H. Fuchs, Suessite, Fe3Si: a new mineral in the North Haig ureilite. Am. Miner. 67, 126–131 (1982)

    Google Scholar 

  29. V. Niculescu, K. Raj, J.I. Budnick, T.J. Burch, W.A. Hines, A.H. Menotti, Relating structural, magnetization, and hyperfine field studies to a local environment model in Fe3−xVxSi and Fe3−xMnxSi. Phys. Rev. B 14, 4160–4176 (1976)

    Article  Google Scholar 

  30. P.K. Muduli, K.J. Friedland, J. Herfort, H.P. Schönherr, K.H. Ploog, Composition dependent properties of Fe3Si films grown on GaAs(113) A substrates. J. Appl. Phys. 105, 07B104 (2009)

    Article  Google Scholar 

  31. M. Singh, S. Bhan, Structural studies on V3Si–Fe3Si system. Cryst. Res. Technol. 19, 81–83 (1984)

    Article  Google Scholar 

  32. W.A. Hines, A.H. Menotti, J.I. Bundnick, T.J. Burch, T. Litrenta, V. Niculescu, K. Raj, Magnetization studies of binary and ternary alloys based on Fe3Si. Phys. Rev. B 13, 4060–4068 (1976)

    Article  Google Scholar 

  33. I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21, 117–128 (2003)

    Article  Google Scholar 

  34. J.B. Rausch, F.X. Kayser, Elastic constants and electrical resistivity of Fe3Si. J. Appl. Phys. 48, 487–493 (1977)

    Article  Google Scholar 

  35. H. Marom, M. Ritterband, M. Eizenberg, The contribution of grain boundary scattering versus surface scattering to the resistivity of thin polycrystalline films. Thin Solid Films 510, 62–67 (2006)

    Article  Google Scholar 

  36. W. Zhang, S.H. Brongersma, T. Clarysse, V. Terzieva, E. Rosseel, W. Vandervorst, K. Maex, Surface and grain boundary scattering studied in beveled polycrystalline thin copper films. J. Vac. Sci. Technol. B 22, 1830–1833 (2004)

    Article  Google Scholar 

  37. A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. 46, 1222–1244 (2007)

    Article  Google Scholar 

  38. J. Moss, P.J. Brown, Spin density distribution in iron–silicon alloys. J. Phys. F 2, 358–372 (1972)

    Article  Google Scholar 

  39. B. Sun, G.Q. Li, W.X. Zhao, Z. Shen, Y.H. Liu, P. Chen, Perpendicular coercive force of thick CoFeB thin films grown on silicon substrate. Mater. Lett. 123, 221–223 (2014)

    Article  Google Scholar 

  40. A. Drigo, R.M. Bozorth, Ferromagnetism. II Nuovo Cimento (1943–1954) 9, 95–96 (1952)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (Grant No. 61264004); Key Science-Technology Program of Guizhou Province, China (Grant No. [2011]3015); Fund for International Science-Technology Cooperation Program of Guizhou Province, China (Grant Nos. [2012]7004, [2013]7003); Special Fund for the Twelfth Five-Year Major Science-Technology Program of Education Department of Guizhou Province, China (Grant No. [2012]0030); Science-Technology Cooperation Program of Guizhou Province, China (Grant No. [2015]7783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Xie, Q., Ma, R. et al. Annealing temperature dependent structures and properties of ferromagnetic Fe3Si films fabricated by resistive thermal evaporation. J Mater Sci: Mater Electron 29, 1369–1376 (2018). https://doi.org/10.1007/s10854-017-8043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8043-7

Navigation