Skip to main content
Log in

Nanoindentation creep on Cu3Sn, Cu6Sn5 and (Cu, Ni)6Sn5 intermetallic compounds grown in electrodeposited multilayered thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin-based multilayered thin films were fabricated for application in three dimensional microelectronic packaging as joining materials. During device fabrication and application, interconnecting materials can be fully converted to intermetallic compounds (IMCs). As known, IMCs are generally brittle and associated with void formation which can make interconnection in the microelectronic devices vulnerable. In an effort to improve the reliability of the Sn–Cu based IMC, ultra thin layers of Ni (70 nm) were inserted into Cu/Sn system. Electrochemical deposition technique was used to fabricate the samples. Isothermal aging at 150 °C for 168 h was performed to grow the IMCs at required thickness for measuring creep by nanoindentation. Creep strain rate was calculated from experimental data. Creep resistance was significantly improved after adding the small amount of Ni in Cu/Sn multilayered thin film system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Mo, Z. Chen, F. Wu, C. Liu, Intermetallics 66, 13 (2015)

    Article  Google Scholar 

  2. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, J. Appl. Phys. 97, 024508 (2005)

    Article  Google Scholar 

  3. D. Kim, J.H. Chang, J. Park, J.J. Pak, J. Mater. Sci. 22, 703 (2011)

    Google Scholar 

  4. A.Z.M.S. Rahman, P.Y. Chia, A.S.M.A. Haseeb, Mater. Lett. 147, 50 (2015)

    Article  Google Scholar 

  5. D. Mu, J. Read, Y. Yang, K. Nogita, J. Mater. Res. 26, 2660 (2011)

    Article  Google Scholar 

  6. Y. Zhao, P. Moreau, M.R. Plouet, J.L. Duvail, Electrochim. Acta 151, 347 (2015)

    Article  Google Scholar 

  7. Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun, L. Jiang, Adv. Mater. 27, 2361 (2015)

    Article  Google Scholar 

  8. C.I. Cuello, C. Broussillou, V. Bermudez, E. Saucedo, A. Perez-Rodriguez, V.I. Roca, Appl. Phys. Lett. 105, 021905 (2014)

    Article  Google Scholar 

  9. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. Deotte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, C.M. Spadaccini, Science 344, 1373 (2014)

    Article  Google Scholar 

  10. H.D. Espinosa, R.A. Bernal, M.M. Jolandan, Adv. Mater. 24, 4656 (2012)

    Article  Google Scholar 

  11. L. Li, C. Ortiz, Nat. Mater. 13, 501 (2014)

    Article  Google Scholar 

  12. V.M.F. Marques, B. Wunderle, C. Johnston, P.S. Grant, Acta Mater. 61, 2471 (2013)

    Article  Google Scholar 

  13. L. Jiang, N. Chawla, Scripta Mater. 63, 480 (2010)

    Article  Google Scholar 

  14. D. Mu, H. Huang, S.D. McDonald, J. Read, K. Nogita, Mater. Sci. Eng. A 566, 126 (2013)

    Article  Google Scholar 

  15. A. Z. M. S. Rahman, P. Y. Chia, A. S. M. A. Haseeb, Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology Symposium, Article number: 7123130 (2015)

  16. P.Y. Chia, A.S.M.A. Haseeb, J. Mater. Sci. 26, 294 (2015)

    Google Scholar 

  17. J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 59, 1198 (2011)

    Article  Google Scholar 

  18. M.S. Park, S.L. Gibbons, R. Arroyave, Acta Mater. 60, 6278 (2012)

    Article  Google Scholar 

  19. S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, P.R. Munroe, M.Z. Quadir, Intermetallics 33, 8 (2013)

    Article  Google Scholar 

  20. Y.W. Wang, C.C. Chang, C.R. Kao, J. Alloys Compd. 478, L1–L4 (2009)

    Article  Google Scholar 

  21. A.C. Fischer-Cripps, Mater. Sci. Eng. A 385, 74 (2004)

    Article  Google Scholar 

  22. L. Shen, P. Lu, S. Wang, Z. Chen, J. Alloys Compd. 574, 98 (2013)

    Article  Google Scholar 

  23. Y.C. Liu, J.W.R. Teo, S.K. Tung, K.H. Lam, J Alloys Compd. 448, 340 (2008)

    Article  Google Scholar 

  24. M.E. Kassner, M.T. Prez-Prado, Fundamentals of Creep in Metals and Alloys (Elsevier, Oxford, 2009)

    Google Scholar 

  25. I.C. Choi, B.G. Yoo, Y.A. Kim, J. Jang, J. Mater. Res. 27, 3 (2012)

    Article  Google Scholar 

  26. J.M. Song, C.W. Su, Y.S. Lai, Y.T. Chiu, J. Mater. Res. 25, 629 (2010)

    Article  Google Scholar 

  27. D. Mu, H. Huang, S.D. Mcdonald, K. Nogita, J. Electron. Mater. 42, 304 (2013)

    Article  Google Scholar 

  28. H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramic (Pergamon Press, Oxford, 1982)

    Google Scholar 

  29. Y. Kamimura, K. Edagawa, S. Takeuchi, Acta Mater. 61, 294 (2013)

    Article  Google Scholar 

  30. J. Cho, C.M. Wang, H.M. Chan, J.M. Rickman, M.P. Harmer, Acta Mater. 47, 4197 (1999)

    Article  Google Scholar 

  31. A.S.M.A. Haseeb, Comput. Mater. Sci. 37, 278 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge High Impact Research grant, University of Malaya from Ministry of Higher Education, Malaysia (Project No. UM.C/625 /1/HIR/ MOHE/ENG/26).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. M. A. Haseeb or Abu Zayed Mohammad Saliqur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haseeb, A.S.M.A., Rahman, A.Z.M.S. & Chia, P.Y. Nanoindentation creep on Cu3Sn, Cu6Sn5 and (Cu, Ni)6Sn5 intermetallic compounds grown in electrodeposited multilayered thin film. J Mater Sci: Mater Electron 29, 1258–1263 (2018). https://doi.org/10.1007/s10854-017-8030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8030-z

Navigation