Skip to main content
Log in

Strategy of adjusting negative permittivity with invariant permeability property in metallic granular percolating composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electromagnetic properties including ac conductivity, reactance, permittivity, and permeability of percolating Fe/Epoxy composites are investigated at radio-frequency range. Percolating behavior is observed in the composites. Below percolation threshold, ac conductivity spectra follows the Jonscher’s power law indicating the weakened trend of hopping conductive behavior, while the skin effect is dominant above percolation threshold. Plasma-type negative permittivity is attributed to the low frequency plasmonic state explained by Drude model. The frequency region and value of negative permittivity are effectively adjusted by SiO2-coated iron particles’ controlling percolating network, while permeability property could be almost kept invariant. Invariant permeability property is attributed to suppressing current loops by SiO2 layers. This strategy with tunable permittivity and invariant permeability provides a method of suppressing the strong electromagnetic coupling effect in intrinsic metamaterials, and can facilitate applications of negative permittivity materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  2. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  Google Scholar 

  3. B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Appl. Phys. Lett. 98, 254101-254101-254103 (2011)

    Google Scholar 

  4. M.J. Freire, R. Marques, L. Jelinek, Appl. Phys. Lett. 231108 (2008)

  5. D.R. Smith, J.B. Pendry, M.C. Wiltshire, Science 305, 788 (2004)

    Article  Google Scholar 

  6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulinavila, D.A. Genov, G. Bartal, X. Zhang, Nature 455, 376–379 (2008)

    Article  Google Scholar 

  7. V.G. Veselago, Soviet Phys. Uspekhi 10, 509 (1968)

    Article  Google Scholar 

  8. H. Chen, J. Mater. Chem. 21, 6452–6463 (2011)

    Article  Google Scholar 

  9. Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, L.T. Zheng, X.H. Zhang, L.W. Yin, Adv. Mater. 24, 2349–2352 (2012)

    Article  Google Scholar 

  10. Z.C. Shi, R.H. Fan, Z.D. Zhang, H.Y. Gong, J. Ouyang, Y.J. Bai, X.H. Zhang, L.W. Yin, Appl. Phys. Lett. 99, 032903 (2011)

    Article  Google Scholar 

  11. Z.-C. Shi, R.-H. Fan, K.-L. Yan, K. Sun, M. Zhang, C.-G. Wang, X.-F. Liu, X.-H. Zhang, Adv. Funct. Mater. 23, 4123–4132 (2013)

    Article  Google Scholar 

  12. M. Chen, R.-H. Fan, M. Gao, S.-B. Pan, M.-X. Yu, Z.-D. Zhang, J. Magn. Magn. Mater. 381, 105–108 (2015)

    Article  Google Scholar 

  13. Z.-C. Shi, S.-G. Chen, R.-H. Fan, X.-A. Wang, X. Wang, Z.-D. Zhang, K. Sun, J. Mater. Chem. C 2, 6752 (2014)

    Article  Google Scholar 

  14. Z.-C. Shi, S.-G. Chen, K. Sun, X. Wang, R.-H. Fan, X.-A. Wang, Appl. Phys. Lett. 104, 252908 (2014)

    Article  Google Scholar 

  15. Z.-C. Shi, R.-H. Fan, X.-A. Wang, Z.-D. Zhang, L. Qian, L.-W. Yin, Y.-J. Bai, J. Eur. Ceram. Soc. 35, 1219–1225 (2015)

    Article  Google Scholar 

  16. K.-L. Yan, R.-H. Fan, M. Chen, K. Sun, L.-W. Yin, H. Li, S.-B. Pan, M.-X. Yu, J. Alloys Compd. 628, 429–432 (2015)

    Article  Google Scholar 

  17. T. Tsutaoka, H. Massango, T. Kasagi, S. Yamamoto, K. Hatakeyama, Appl. Phys. Lett. 108, 191904 (2016)

    Article  Google Scholar 

  18. X. Yao, X. Kou, J. Qiu, Carbon 107, 261–267 (2016)

    Article  Google Scholar 

  19. K.-L. Yan, R.-H. Fan, Z.-C. Shi, M. Chen, L. Qian, Y.-L. Wei, K. Sun, J. Li, J. Mater. Chem. C 2, 1028–1033 (2014)

    Article  Google Scholar 

  20. Z. Zhang, R. Fan, Z. Shi, K. Yan, Z. Zhang, X. Wang, S. Dou, RSC Adv. 3, 26110 (2013)

    Article  Google Scholar 

  21. Z.-D. Zhang, R.-H. Fan, Z.-C. Shi, S.-B. Pan, X.L. Wang, S.X. Dou, K.-L. Yan, K.-N. Sun, J.-D. Zhang, X.-F. Liu, J. Mater. Chem. C 1, 79–85 (2013)

    Article  Google Scholar 

  22. Z.-C. Shi, R.-H. Fan, Z.-D. Zhang, K.-L. Yan, X.-H. Zhang, K. Sun, X.-F. Liu, C.-G. Wang, J. Mater. Chem. C 1, 1633 (2013)

    Article  Google Scholar 

  23. K.-L. Yan, R.-H. Fan, X.-A. Wang, M. Chen, K. Sun, Z.-D. Zhang, Q. Hou, L. Qian, S.-B. Pan, M.-X. Yu, RSC Adv. 4, 25804 (2014)

    Article  Google Scholar 

  24. X.-A. Wang, Z.-C. Shi, M. Chen, R.-H. Fan, K.-L. Yan, K. Sun, X.M. Chen, S.-B. Pan, M.-X. Yu, J. Am. Ceram. Soc. 97, 3223–3229 (2014)

    Article  Google Scholar 

  25. S. Raffy, B. Mascaro, T. Brunet, O. Mondainmonval, J. Leng, Adv. Mater. 28, 1760–1764 (2016)

    Article  Google Scholar 

  26. C.-D. Liu, S.-N. Lee, C.-H. Ho, J.-L. Han, K.-H. Hsieh, J. Phys. Chem. C 112, 15956–15960 (2008)

    Article  Google Scholar 

  27. S. Moreton, K. Faulds, N.C. Shand, M.A. Bedics, M.R. Detty, D. Graham, Nanoscale 7, 6075–6082 (2015)

    Article  Google Scholar 

  28. C. Caparrós, M. Benelmekki, P.M. Martins, E. Xuriguera, C.J.R. Silva, L.M. Martinez, S. Lanceros-Méndez, Mater. Chem. Phys. 135, 510–517 (2012)

    Article  Google Scholar 

  29. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  30. A.K. Jonscher, Nature, 267, 673–679 (1977)

    Article  Google Scholar 

  31. J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72, 873 (2000)

    Article  Google Scholar 

  32. P. Xie, K. Sun, Z. Wang, Y. Liu, R. Fan, Z. Zhang, G. Schumacher, J. Alloys Compd. (2017). doi:10.1016/j.jallcom.2017.04.248

    Google Scholar 

  33. P. Xie, Z. Wang, K. Sun, C. Cheng, Y. Liu, R. Fan, Appl. Phys. Lett. 111, 112903 (2017)

    Article  Google Scholar 

  34. P. Xie, Z. Zhang, K. Liu, L. Qian, F. Dang, Y. Liu, R. Fan, X. Wang, S. Dou, Carbon (2017)

  35. L. Zhang, Z. Mao, J.D. Thomason, S. Wang, K. Huang, J. Am. Ceram. Soc. 95, 1832–1837 (2012)

    Article  Google Scholar 

  36. M. Frey, Z. Xu, P. Han, D. Payne, Ferroelectrics 206, 337–353 (1998)

    Article  Google Scholar 

  37. N. Guo, S.A. DiBenedetto, P. Tewari, M.T. Lanagan, M.A. Ratner, T.J. Marks, Chem. Mater. 22, 1567–1578 (2010)

    Article  Google Scholar 

  38. P. Kum-onsa, P. Thongbai, S. Maensiri, P. Chindaprasirt, J. Mater. Sci. 27, 9650–9655 (2016)

    Google Scholar 

  39. H. Lu, J. Lin, W. Yang, L. Liu, J. Mater. Sci. 28, 13360–13370 (2017)

    Google Scholar 

  40. J. Bostock-Smith, Phys. Educ. 43, 265 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China [Grant No. 51771104 and 51402170]. Thanks for help of writing assistance from Yuke Cai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Xie, P., Fan, G. et al. Strategy of adjusting negative permittivity with invariant permeability property in metallic granular percolating composites. J Mater Sci: Mater Electron 29, 1246–1253 (2018). https://doi.org/10.1007/s10854-017-8027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8027-7

Navigation