Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries

  • Shaohua Qu
  • Yinkai Yu
  • Kejun Lin
  • Peiyu Liu
  • Chenhui Zheng
  • Liuding Wang
  • Tingting XuEmail author
  • Zhengdong Wang
  • Hongjing WuEmail author


Herein, uniform triple-shelled La2O3 hollow spheres were synthesized for the first time by a facile one-pot hydrothermal method capable of controlling the number of internal thin-shells, which can be achieved by controlling the calcination temperature. Used as anodes for Li-ion batteries, the triple-shelled La2O3 hollow spheres show excellent cycling performance, good rate capacity, and high specific capacity. A superior capacity, up to 108 mAh g−1 with minimal irreversible capacity after 100 cycles is achieved at a current rate of 100 mA g−1. After the high-rate charge–discharge cycling, a specific discharge capacity as high as 190.1 mAh g−1 can be restored when the current density is reduced to 50 mA g−1 (theoretical specific capacity = 246.8 mAh g−1).



Financial support was provided by National Natural Science Foundation of China (Nos. 50771082 and 60776822). The project was also supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JQ5116). The authors thank the colleagues in the laboratory of International Center for Dielectric Research for their support.


  1. 1.
    H. Ren, J. Sun, R. Yu, M. Yang, L. Gu, P. Liu, H. Zhao, D. Kisailuse, D. Wang, Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 7, 793–798 (2016)CrossRefGoogle Scholar
  2. 2.
    Z. Wu, Y. Zhong, J. Li, X. Guo, L. Huang, B. Zhong, S. Sun, L-histidine-assisted template-free hydrothermal synthesis of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties. J. Mater. Chem. A 2, 12361–12367 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate control of multishelled Co3O4 hollow microspheres as high performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52, 6417–6420 (2013)CrossRefGoogle Scholar
  4. 4.
    H. Su, Y. Xu, S. Feng, Z. Wu, X. Sun, C. Shen, J. Wang, J. Li, L. Huang, S. Sun, Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES. ACS Appl. Mater. Interfaces 7, 8488–8494 (2015)CrossRefGoogle Scholar
  5. 5.
    J.C. Park, J. Kim, H. Kwon, H. Song, Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. 21, 803–807 (2009)CrossRefGoogle Scholar
  6. 6.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRefGoogle Scholar
  7. 7.
    C.G. Hu, H. Liu, W.T. Dong, Y.Y. Zhang, G. Bao, C.S. Lao, Z.L. Wang, La(OH)3 and La2O3 nanobelts—synthesis and physical properties. Adv. Mater. 19, 470–474 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Shi, K. Li, S. Wang, R. Zong, G. Zhang, Structural characterization and enhanced luminescence of Eu-doped 2CeO2-0.5La2O3 composite phosphor powders by a facile solution combustion synthesis. J. Mater. Chem. C 5, 4302–4309 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Sasidharan, N. Gunawardhana, M. Inoue, S. Yusa, M. Yoshiob, K. Nakashimac, La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries. Chem. Commun. 48, 3200–3202 (2012)CrossRefGoogle Scholar
  10. 10.
    R. Indhrajothi, I. Prakash, M. Venkateswarlu, N. Satyanarayan, Lanthanum ion (La3+) substituted CoFe2O4 anode material for lithium ion battery applications. New J. Chem. 39, 4601–4610 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Wu, Y. Cheng, F. Xiang, Z. Jia, Q. Xie, G. Wu, H. Wu, Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mater. Sci. Semiconduct. Process. 41, 6–11 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J. Mater. Sci.: Mater. Electron. 28, 576–581 (2017)Google Scholar
  14. 14.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, X. Li, Multi-shelled NiO hollow spheres: easy hydrothermal synthesis and lithium storage performances. J. Alloys Compd. 685, 8–14 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, A. Pan, Q. Zhu, Z. Nie, Y. Zhang, Y. Tang, S. Liang, G. Cao, Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. J. Power Sources 272, 107–112 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Lin, J. Duh, M. Hung, Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery. J. Phys. Chem. C 114, 13136–13141 (2010)CrossRefGoogle Scholar
  18. 18.
    H. Wu, G. Wu, Q. Wu, L. Wang, Facile synthesis and microwave absorbability of C@Ni-NiO core-shell hybrid solid sphere and multi-shelled NiO hollow sphere. Mater. Charact. 97, 18–26 (2014)CrossRefGoogle Scholar
  19. 19.
    H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776–9783 (2015)CrossRefGoogle Scholar
  20. 20.
    J.S. Deng, S.M. Li, Y.Y. Zhou, L.Y. Liang, B. Zhao, Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarization. J. Colloid Interface Sci. 509 406–413. (2018)CrossRefGoogle Scholar
  21. 21.
    G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Multishelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem. Eur. J. 22, 8864–8871 (2016)CrossRefGoogle Scholar
  24. 24.
    G. Wu, H. Wu, K. Wang, C. Zheng, Y. Wang, A. Feng, Facile synthesis and application of multi-shelled SnO2 hollow spheres in lithium ion battery. RSC Adv. 6, 58069–58076 (2016)CrossRefGoogle Scholar
  25. 25.
    L. Zhou, D. Zhao, X.W. Lou, Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 24, 745–748 (2012)CrossRefGoogle Scholar
  26. 26.
    N. Venugopal, D.J. Lee, Y.J. Lee, Y.K. Sun, Self-assembled hollow mesoporous Co3O4 hybrid architectures: a facile synthesis and application in Li-ion batteries. J. Mater. Chem. A 1, 13164–13170 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54, 1868–1872 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Pan, H.B. Wu, L. Yu, X.W. Lou, Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. Int. Ed. 52, 2226–2230 (2013)CrossRefGoogle Scholar
  29. 29.
    G. Zhang, X.W. Lou, General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew. Chem. Int. Ed. 53, 9041–9044 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Department of Applied ChemistryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  3. 3.Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations