Influence of Cu incorporation on ionic conductivity and dielectric relaxation mechanism in NiO thin films synthesized by CBD

An Author Correction to this article was published on 07 May 2018

This article has been updated

Abstract

We present the influence of copper incorporation on ionic conductivity and dielectric relaxation mechanism of NiOthin films deposited by chemical bath deposition (CBD) method in this report. Structural and optical characterization of NiO and Cu:NiO thin films were carried out using XRD and UV–Vis spectroscopy. Increase in grain size and decrease in average microstrain in doped films were confirmed from XRD analysis. The spectrophotometric measurement shows band gap decreases with increase in dopant concentration. Impedance spectroscopy, modulus spectroscopy and dielectric study has been performed for ac electrical characterization. Impedance spectroscopy analysis confirmed enhancement of ac conductivity withCu incorporation suggesting an increase in charge carrier concentration due to doping. Enhancement in both real and imaginary part of dielectric constant was observed with Cu doping in NiO thin films. Activation energy to electrical transport process was determined from dc conductivity analysis and migration energy of charge carriers was determined from modulus spectroscopy analysis. Cole–Cole plot shows both grain and grain boundary contributes towards total resistance and capacitance. The overall resistance was found to decrease with Cu incorporation in NiO thin film. The observed results suggest hopping mechanism of charge carriers towards electrical conduction process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Change history

  • 07 May 2018

    The original version of this article contained an error in figure.

References

  1. 1.

    E. Fortunato, D. Ginley, H. Hosono, D.C. Paine, MRS Bull. 32, 242 (2007)

    Article  Google Scholar 

  2. 2.

    M.M. Gomaa, M. Boshta, B.S. Farag, M.B.S. Osman, J. Mater. Sci. Mater. Electron. 27, 711 (2016)

    Article  Google Scholar 

  3. 3.

    H. Ohta, K.I. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono, Appl. Phys. Lett. 77, 475 (2000)

    Article  Google Scholar 

  4. 4.

    J.F. Wager, D.A. Keszler, R.E. Presley, Transparent Electronics. (Springer, New York, 2008)

    Google Scholar 

  5. 5.

    H.L. Chen, Y.M. Lu, W.S. Hwang, Surf. Coat. Technol. 198, 138 (2005)

    Article  Google Scholar 

  6. 6.

    X. Chen, L. Zhao, Q. Niu, J. Electron. Mater. 41, 3382 (2012)

    Article  Google Scholar 

  7. 7.

    I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sens. Actuators B 57, 147 (1999)

    Article  Google Scholar 

  8. 8.

    E. Antoini, J. Mater. Sci. 27, 3335 (1992)

    Article  Google Scholar 

  9. 9.

    U.S. Joshi, Y. Matsumoto, K. Itaka, M. Sumiya, H. Koinuma, Appl. Surf. Sci. 252, 2524 (2006)

    Article  Google Scholar 

  10. 10.

    M.B. Dutt, R. Banerjee, A.K. Barua, Phys. Status Solidi A 65, 365 (1981)

    Article  Google Scholar 

  11. 11.

    P.S. Patil, L.D. Kadam, Appl. Surf. Sci. 199, 211 (2002)

    Article  Google Scholar 

  12. 12.

    J. Bandara, C.M. Divarathne, S.D. Nanayakkara, Sol. Energy Mater. Sol. Cells 81, 429 (2004)

    Article  Google Scholar 

  13. 13.

    I. Hotovy, L. Spiess, M. Predanocy, V. Rehacek, J. Racko, Vacuum 107, 129 (2014)

    Article  Google Scholar 

  14. 14.

    L. Cattin, B.A. Reguig, A. Khelil, M. Morsli, K. Benchouk, J.C. Berne-de, Appl. Surf. Sci. 254, 5814 (2008)

    Article  Google Scholar 

  15. 15.

    H. Moulki, C. Faure, M. Mihelcic, A. Surca Vuk, F. Svegl, B. Orel, G. Campet, A.V. Chadwick, D. Gianolio, A. Rougier, M. Alfredsson, Thin Solid Films 553, 63 (2004)

    Article  Google Scholar 

  16. 16.

    J.F. Wager, Science 300, 1245 (2003)

    Article  Google Scholar 

  17. 17.

    L. Zhao, G. Su, W. Liu, L. Cao, J. Wang, Z. Dong, M. Song, Appl. Surf. Sci. 257, 3974 (2011)

    Article  Google Scholar 

  18. 18.

    Y.M. Lu, W.S. Hwang, J.S. Yang, Surf. Coat. Technol. 155, 231 (2002)

    Article  Google Scholar 

  19. 19.

    I. Valyukh, S. Green, H. Arwin, G.A. Niklasson, E. Wäckelgard, C.G. Granqvist, Sol. Energy Mater Sol. Cells 94, 724 (2010)

    Article  Google Scholar 

  20. 20.

    J. Kang, S. Rhee, Thin Solid Films 391, 57 (2001)

    Article  Google Scholar 

  21. 21.

    A.M. Galvan, M.A. Hurtado, A.M. Beltran, Thin Solid Films 517, 3115 (2009)

    Article  Google Scholar 

  22. 22.

    M.A. Hurtado, A.M. Galvian, Mater. Chem. Phys. 107, 33 (2008)

    Article  Google Scholar 

  23. 23.

    F. Vera, R. Schrebler, E. Munoz, C. Suarez, P. Cury, A. Gomez, R. Cordova, R.E. Marotti, E.A. Dalchiele, Thin Solid Films 490, 182 (2005)

    Article  Google Scholar 

  24. 24.

    X. Wang, Z. Wei, J. Adv. Microsc. Res. 10, 24 (2015)

    Article  Google Scholar 

  25. 25.

    E.O. Zayim, I. Turhan, F.Z. Tepehan, N. Ozer, Sol. Energy Mater. Sol. Cells 92, 164 (2008)

    Article  Google Scholar 

  26. 26.

    N.S. Das, B. Saha, R. Thapa, G.C. Das, K.K. Chattopadhyay, Physica E 42, 1377 (2010)

    Article  Google Scholar 

  27. 27.

    M. Jiassi, I. Sta, M. Hajji, H. Ezzaouia, Mater. Sci. Semicond. Process. 21, 7 (2014)

    Article  Google Scholar 

  28. 28.

    S.J. Ikhmayies, R.N. Ahmad-Bitar, J. Mater. Res. Technol. 2, 221 (2013)

    Article  Google Scholar 

  29. 29.

    K. Sato, S. Kim, S. Komuro, X. Zhao, Jpn. J. Appl. Phys. 55, 06GJ10 (2016)

    Article  Google Scholar 

  30. 30.

    S. Manimenaka, G. Umadevi, M. Manickam, Mat. Chem. Phys. 191, 181 (2017)

    Article  Google Scholar 

  31. 31.

    S. Moghe, A.D. Acharya, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, V. Ganesan, Renewable Energy 46, 43 (2012)

    Article  Google Scholar 

  32. 32.

    D. Ellis, S. Irvine, J. Mater. Sci. 15, 369 (2004)

    Google Scholar 

  33. 33.

    M. Dhanam, R.P. Rajeev, P.K. Manoj, Mater. Chem. Phys. 107, 289 (2008)

    Article  Google Scholar 

  34. 34.

    J. Tauc, Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974), pp. 159–220

    Book  Google Scholar 

  35. 35.

    K. Mageshwari, R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Process. 16, 337 (2013)

    Article  Google Scholar 

  36. 36.

    F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  37. 37.

    G. Kumar, S. Sharma, R.K. Kotnala, J. Shah, S.E. Shirsath, K.M. Batoo, M. Singh, J. Mol. Struct. 1051, 336–344 (2013)

    Article  Google Scholar 

  38. 38.

    T. Veeramanikandasamy, K. Rajendran, K. Sambath, P. Rameshbabu, Mater. Chem. Phys. 171, 328 (2016)

    Article  Google Scholar 

  39. 39.

    M.M. El-Nahass, A.F. El-Deeb, F. Salam, Org. Electron. 7, 261 (2006)

    Article  Google Scholar 

  40. 40.

    E.A.A. Jarvis, E.A. Carter, J. Phys. Chem. B 106, 7995 (2002)

    Article  Google Scholar 

  41. 41.

    A.K. Jonscher, Nature 256, 673–679 (1977)

    Article  Google Scholar 

  42. 42.

    A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, ISRN Ceram. (2012)

  43. 43.

    K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  44. 44.

    S.R. Elliot, Adv. Phys. 36, 135 (1987)

    Article  Google Scholar 

  45. 45.

    A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039 (1998)

    Article  Google Scholar 

  46. 46.

    A.A. Youssef Ahmed, Z. Naturforsch. 57, 263 (2002)

    Google Scholar 

  47. 47.

    D.P. Almond, A.R. West, Nature 306, 456 (1983)

    Article  Google Scholar 

  48. 48.

    K. Sankarasubramanian, P. Soundarrajan, T. Logu, S. Kiruthika, K. Sethuraman, R. RameshBabu, K. Ramamurthi, Mater. Sci. Semicond. Process. 26, 346 (2014)

    Article  Google Scholar 

  49. 49.

    S. Brahma, R.N.P. Choudhary, A.K. Thakur, Physica B 355, 188 (2005)

    Article  Google Scholar 

  50. 50.

    J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)

    Article  Google Scholar 

  51. 51.

    I. Denk, J. Claus, J. Maier, J Electrochem. Soc. 144, 3526 (1997)

    Article  Google Scholar 

  52. 52.

    N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, Int. J. Hydrogen Energy 35, 4428 (2010)

    Article  Google Scholar 

  53. 53.

    K.C.V. Rajulu, B. Tilak, K.S. Rao, Appl. Phys. A 106, 533 (2012)

    Google Scholar 

  54. 54.

    A. Mukherjee, P. Ghosh, A.A. Aboud, P. Mitra, Mater. Chem. Phys. 184, 101 (2016)

    Article  Google Scholar 

  55. 55.

    J. Jose, M.A. Khadar, Nanostruct. Mater. 11, 1091 (1999)

    Article  Google Scholar 

  56. 56.

    D. Degar, K. Ulutas, S. Yakut, H. Kara, Mater. Sci. Semicond. Process. 38, 1 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (MRD) acknowledges University Grants Commission (UGC), India for proving Junior Research Fellowship (Ref. No. 21/12/2014(ii)EU-V) during the work. The authors wish to acknowledge the University Grants Commission (UGC), India, for granting Centre for Advanced Study (CAS) under the thrust area ‘‘Condensed Matter Physics including Laser applications’’ to the Department of Physics, Burdwan University (No F. 530/5/CAS/2011(SAP-I)). The authors also acknowledge Dr. A. Datta and S. Bandyopadhyay, Dept. of Physics, The University of Burdwan for recording electrical data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Mitra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, M.R., Mukherjee, A. & Mitra, P. Influence of Cu incorporation on ionic conductivity and dielectric relaxation mechanism in NiO thin films synthesized by CBD. J Mater Sci: Mater Electron 29, 1216–1231 (2018). https://doi.org/10.1007/s10854-017-8024-x

Download citation