Skip to main content

Advertisement

Log in

Hydrothermal growth of magnesium ferrite rose nanoflowers on Nickel foam; application in high-performance asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, for the first time, magnesium ferrite rose nanoflowers (MFRNs) were directly grown on nickel foam through a facile two-step hydrothermal and post-annealing method. FESEM studies showed that MFRNs have a micro to nano architecture from microflower bundles to nanopetals. The rose flowers consist of sheet-like petals with a thickness of 22–44 nm. A mechanism was proposed for the growth of nanostructures, and then they were studied by different electrochemical techniques of cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) for possible application in supercapacitor electrodes. The MFRNs/NiF electrode showed a specific capacitance of 240 F g−1 (or 121 mF cm−2) at a scan rate of 20 mV s−1. Furthermore, the charge–discharge voltammetric studies showed that the excessive cycling not only does not lead to performance degradation but higher capacitances due to enhanced contribution of the pseudocapacitor. Lastly, the electrode performance was tested in two-electrode configuration and it proved a promising electrode in asymmetric supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C.P. Grey, B. Dunn, P. Simon, Nat. Energy 1, 16070 (2016)

    Article  Google Scholar 

  2. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol. 5, 651 (2010)

    Article  Google Scholar 

  3. D.P. Dubal, Y.P. Wu, R. Holze, ChemTexts 2, 13 (2016)

    Article  Google Scholar 

  4. A. Ferris, S. Garbarino, D. Guay, D. Pech, Adv. Mater. 27, 6625 (2015)

    Article  Google Scholar 

  5. H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6, 41 (2013)

    Article  Google Scholar 

  6. W.-W. Liu, Y.-Q. Feng, X.-B. Yan, J.-T. Chen, Q.-J. Xue, Adv. Funct. Mater. 23, 4111 (2013)

    Article  Google Scholar 

  7. S. He, W. Chen, Nanoscale 7, 6957 (2015)

    Article  Google Scholar 

  8. W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011)

    Article  Google Scholar 

  9. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.B. Zhao, H.J. Fan, ACS Nano. 6, 5531 (2012)

    Article  Google Scholar 

  10. Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu, Y. Li, Sci. Rep. 4, 5787 (2014)

    Article  Google Scholar 

  11. N. Venugopal, Q. Mahmood, H.S. Park, W.-S. Kim, J. Nanosci. Nanotechnol. 16, (2016)

  12. A. Kumar, A. Sanger, A. Kumar, Y. Kumar, R. Chandra, Electrochim. Acta. 220, (2016)

  13. S. Liu, K. San Hui, K.N. Hui, J.M. Yun, K.H. Kim, J. Mater. Chem. A. 4, (2016)

  14. S.H. Kazemi, K. Malae, J. Iran. Chem. Soc. 1 (2016)

  15. H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, P. Norouzi, RSC Adv. 6, 51211 (2016)

    Article  Google Scholar 

  16. H.R. Naderi, P. Norouzi, M.R. Ganjali, Appl. Surf. Sci. 366, 552 (2016)

    Article  Google Scholar 

  17. Z. Wang, W. Jia, M. Jiang, C. Chen, Y. Li, Nano Res. 9, 2026 (2016)

    Article  Google Scholar 

  18. M.S. Javed, C. Zhang, L. Chen, Y. Xi, C. Hu, J. Mater. Chem. A (2016)

  19. M.M. Vadiyar, S.S. Kolekar, J.-Y. Chang, A.A. Kashale, A.V. Ghule, Electrochim. Acta 222, 1604 (2016)

    Article  Google Scholar 

  20. Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Adv. Energy Mater. (2016)

  21. V.S. Kumbhar, A.D. Jagadale, N.M. Shinde, C.D. Lokhande, Appl. Surf. Sci. 259, 39 (2012)

    Article  Google Scholar 

  22. P. Bhojane, A. Sharma, M. Pusty, Y. Kumar, S. Sen, P. Shirage, 16, (2016). 1

  23. B. Li, Y. Fu, H. Xia, X. Wang, Mater. Lett. 122, 193 (2014)

    Article  Google Scholar 

  24. W. Cai, T. Lai, W. Dai, J. Ye, J. Power Sources 255, 170 (2014)

    Article  Google Scholar 

  25. L. Lv, Q. Xu, R. Ding, L. Qi, H. Wang, Mater. Lett. 111, 35 (2013)

    Article  Google Scholar 

  26. K.V. Sankar, R.K. Selvan, D. Meyrick, RSC Adv. 5, 99959 (2015)

    Article  Google Scholar 

  27. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, Rsc Adv. 5, 46050 (2015)

    Article  Google Scholar 

  28. C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, L. Li, P. Shen, K. Zhang, Electrochim. Acta 169, 202 (2015)

    Article  Google Scholar 

  29. M.I. m Omer, O.A. Elbadawi, O.A. Yassin, J. Appl. Ind. Sci. 1, 20 (2013)

    Google Scholar 

  30. R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, J. Mater. Sci. 48, 6509 (2013)

    Article  Google Scholar 

  31. S. Ilhan, S.G. Izotova, A.A. Komlev, Ceram. Int. 41, 577 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks the research council of University of Tehran for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ganjali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 418 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaie, K., Ganjali, M.R., Alizadeh, T. et al. Hydrothermal growth of magnesium ferrite rose nanoflowers on Nickel foam; application in high-performance asymmetric supercapacitors. J Mater Sci: Mater Electron 29, 650–657 (2018). https://doi.org/10.1007/s10854-017-7958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7958-3

Navigation