Skip to main content
Log in

Effects of B2O3 additive on ultra-low-loss Mg4Ta2O9 microwave dielectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of B2O3 additive on the phase composition and microwave dielectric properties of Mg4Ta2O9 ceramic were investigated by solid state reaction method. The results showed that the B2O3 additive can lower sintering temperatures of Mg4Ta2O9 ceramics from 1425 °C to below 1325 °C. The XRD patterns exhibited that chemical reactions happened between Mg4Ta2O9 and B2O3 forming two new phases MgTa2O6 and Mg5TaO3 (BO3)3 during sintering in the materials. As B2O3 additive increased from 0 to 5 wt%, MgTa2O6 and Mg5TaO3 (BO3)3 phases also gradually increased. At the same time, the relative permittivity (εr) increased from 11.67 to 12.57, whereas the quality factor (Qf) decreased from 280,000 GHz to 170,000 GHz, and the temperature coefficient of resonant frequency (τf) remained unchanged. The changes of the dielectric properties with the B2O3 additive content were correlated with the phase evolutions of the material during sintering. Typically, the Mg4Ta2O9-1 wt% B2O3 ceramic sintered at 1325 °C for 4 h acquired the best dielectric properties: εr = 12.15,Qf = 260000 GHz,and τf = − 64 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Wakino, Ferroelectrics 91, 69 (1989). doi:10.1080/00150198908015730

    Article  Google Scholar 

  2. R.R. Tummala, J. Am. Ceram. Soc. 74, 895 (1991). doi:10.1111/j.1151-2916.1991.tb04320.x

    Article  Google Scholar 

  3. M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392 (2015). doi:10.1179/1743280415y.0000000007

    Article  Google Scholar 

  4. G. Wolfram, H.E. Gobel, Mater. Res. Bull. 16, 1455 (1981). doi:10.1016/0025-5408(81)90066-0

    Article  Google Scholar 

  5. S. Nomura, Ferroelectrics 49, 61 (1983). doi:10.1080/00150198308244666

    Article  Google Scholar 

  6. V. Parvanova, I. Iliev, J. Mater. Sci. 17, 815 (2006). doi:10.1007/s10854-006-0027-y

    Google Scholar 

  7. L.Z. Wang, L.X. Wang, Z.F. Wang et al., J. Mater. Sci. 26, 9026 (2015). doi:10.1007/s10854-015-3586-y

    Google Scholar 

  8. H. Ogawa, A. Kan, S. Ishihara, Y. Higashida, J. Eur. Ceram. Soc. 23, 2485 (2003). doi:10.1016/s0955-2219(03)00167-5

    Article  Google Scholar 

  9. A. Kan, H. Ogawa, A. Yokoi, Y. Nakamura, J. Eur. Ceram. Soc. 27, 2977 (2007). doi:10.1016/j.jeurceramsoc.2006.11.064

    Article  Google Scholar 

  10. J.S. Kim, E.S. Choi, K.W. Ryu et al., Mater. Sci. Eng. B 162, 87 (2009). doi:10.1016/j.mseb.2009.03.025

    Article  Google Scholar 

  11. D.W. Kim, K.H. Ko, K.S. Hong, J. Am. Ceram. Soc. 84, 1286 (2001)

    Article  Google Scholar 

  12. B.Y. Huang, Z.F. Wang, T. Chen et al., J. Mater. Sci. 25, 5264 (2014). doi:10.1007/s10854-014-2299-y

    Google Scholar 

  13. H.T. Wu, L.X. Li, J. Sol-Gel Sci. Technol. 58, 48 (2011). doi:10.1007/s10971-010-2353-z

    Article  Google Scholar 

  14. J.D. Guo, J.X. Bi, H.T. Wu, Surf. Rev. Lett. 23, 7 (2016). doi:10.1142/S0218625X15500900

    Article  Google Scholar 

  15. L. Fang, Y. Tang, D.J. Chu et al., J. Mater. Sci. 23, 478 (2012). doi:10.1007/s10854-011-0421-y

    Google Scholar 

  16. M. He, H.W. Zhang, J. Mater. Sci. 24, 3303 (2013). doi:10.1007/s10854-013-1247-6

    Google Scholar 

  17. J. Krupka, K. Derzakowski, B. Riddle, J. Baker-Jarvis, Meas. Sci. Technol. 9, 1751 (1998). doi:10.1088/0957-0233/9/10/015

    Article  Google Scholar 

  18. T. Kawano, H. Yamane, J. Solid State Chem. 184, 2466 (2011). doi:10.1016/j.jssc.2011.07.022

    Article  Google Scholar 

  19. A. Wachtel, J. Electrochem. Soc. 111, 534 (1964). doi:10.1149/1.2426176

    Article  Google Scholar 

  20. S.J. Penn, N.M. Alford, A. Templeton et al., J. Am. Ceram. Soc. 80, 1885 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhao Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, M., Ren, H., Xie, T. et al. Effects of B2O3 additive on ultra-low-loss Mg4Ta2O9 microwave dielectric ceramics. J Mater Sci: Mater Electron 29, 568–572 (2018). https://doi.org/10.1007/s10854-017-7948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7948-5

Navigation