Size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation

Abstract

Powders with compositions Ti(1x)SixO2 (where 0 ≤ x ≤ 0.25) were prepared to systematically study the effects of Si doping on anatase to rutile phase transformation. Samples were synthesized using a modified sol–gel route and were heat treated at various temperature in 450–950 °C range. XRD, Raman Spectroscopy, UV–vis spectroscopy, SEM, TEM were used to study the effects of dopant concentration and heat-treatments on the crystal structure, crystallite size and particle size. Rutile phase was found to occur only above a critical crystallite size. Si doping was found to delay the onset of anatase to rutile phase transformation from 500 °C (for composition x = 0) to 800 °C (for x = 0.25) through the lattice strain and crystallize size modification. Interplay between the average crystallite sizes, lattice strain, annealing temperature, and their effect on phase transition are discussed in terms of Si incorporation in lattice.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    B.J. Morgan, G.W. Watson, J. Phys. Chem. C 114, 2321 (2010). doi:10.1021/jp9088047

    CAS  Article  Google Scholar 

  2. 2.

    X. Hong, Z. Wang, W. Cai et al., Chem. Mater. 17, 1548 (2005). doi:10.1021/cm047891k

    CAS  Article  Google Scholar 

  3. 3.

    Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 6575 (2012). doi:10.1021/ja302846n

    CAS  Article  Google Scholar 

  4. 4.

    A. Sousa-Castillo, M. Comesaña-Hermo, B. Rodríguez-González et al., J. Phys. Chem. C 120, 11690 (2016). doi:10.1021/acs.jpcc.6b02370

    CAS  Article  Google Scholar 

  5. 5.

    J. Nisar, Z. Topalian, A. De Sarkar, L. Österlund, R. Ahuja, ACS Appl. Mater. Interfaces 5, 8516 (2013). doi:10.1021/am4018835

    CAS  Article  Google Scholar 

  6. 6.

    D.P. Macwan, P.N. Dave, S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011). doi:10.1007/s10853-011-5378-y

    CAS  Article  Google Scholar 

  7. 7.

    I. Chung, B. Lee, J. He, R.P.H Chang, M.G. Kanatzidis, Nature 485, 486 (2012). doi:10.1038/nature11067

    CAS  Article  Google Scholar 

  8. 8.

    F. Giordano, A. Abate, J.P. Correa Baena et al., Nat. Commun. 7, 10379 (2016). doi:10.1038/ncomms10379

    CAS  Article  Google Scholar 

  9. 9.

    N. Liu, C. Schneider, D. Freitag et al., Nano Lett. 14, 3309 (2014). doi:10.1021/nl500710j

    CAS  Article  Google Scholar 

  10. 10.

    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010). doi:10.1021/cr1001645

    CAS  Article  Google Scholar 

  11. 11.

    A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz Environ. Sci. Technol. 46, 2242 (2012). doi:10.1021/es204168d

    CAS  Article  Google Scholar 

  12. 12.

    G. Bachler, N. von Goetz, K. Hungerbuhler, Nanotoxicology 9, 373 (2015). doi:10.3109/17435390.2014.940404

    CAS  Article  Google Scholar 

  13. 13.

    M. Montazer, E. Pakdel, M.B. Moghadam, (2010) Fibers Polym. 11, 967. doi:10.1007/s12221-010-0967-y

    CAS  Article  Google Scholar 

  14. 14.

    G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Recent Pat. Corros. Sci. 2, 40 (2010). doi:10.2174/1877610801002010040

    CAS  Article  Google Scholar 

  15. 15.

    R. Fateh, A.A. Ismail, R. Dillert, D.W. Bahnemann, J. Phys. Chem. C 115, 10405 (2011). doi:10.1021/jp200892z

    CAS  Article  Google Scholar 

  16. 16.

    B. Liu, X. Zhao, Phys. Chem. Chem. Phys. 16, 22343 (2014). doi:10.1039/C4CP02243B

    CAS  Article  Google Scholar 

  17. 17.

    C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, C. Thanachayanont, Ceram. Int. 34, 1067 (2008). doi:10.1016/j.ceramint.2007.09.043

    CAS  Article  Google Scholar 

  18. 18.

    Y. Lai, Y. Tang, J. Gong et al., J. Mater. Chem. 22, 7420 (2012). doi:10.1039/C2JM16298A

    CAS  Article  Google Scholar 

  19. 19.

    K.M. Kummer, E.N. Taylor, N.G. Durmas, K.M. Tarquinio, B. Ercan, T.J. Webster, J. Biomed. Mater. Res. B 101, 677 (2013). doi:10.1002/jbm.b.32870

    CAS  Article  Google Scholar 

  20. 20.

    T. Tatsuma, W. Kubo, A. Fujishima, Langmuir 18, 9632 (2002). doi:10.1021/la026246u

    CAS  Article  Google Scholar 

  21. 21.

    V.M. Daskalaki, M. Antoniadou, G. Li Puma, D.I. Kondarides, P. Lianos, Environ. Sci. Technol. 44, 7200 (2010). doi:10.1021/es9038962

    CAS  Article  Google Scholar 

  22. 22.

    R. Fagan, D.E. McCormack, S. Hinder, S.C. Pillai, Mater. Des. 96, 44 (2016). doi:10.1016/j.matdes.2016.01.142

    CAS  Article  Google Scholar 

  23. 23.

    P. Periyat, D.E. McCormack, S.J. Hinder, S.C. Pillai, J. Phys. Chem. C 113, 3246 (2009)

    CAS  Article  Google Scholar 

  24. 24.

    D. Dambournet, I. Belharouak, K. Amine, Chem. Mater. 22, 1173 (2010). doi:10.1021/cm902613h

    CAS  Article  Google Scholar 

  25. 25.

    S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011). doi:10.1007/s11434-011-4476-1

    CAS  Article  Google Scholar 

  26. 26.

    DAH Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011). doi:10.1007/s10853-010-5113-0

    CAS  Article  Google Scholar 

  27. 27.

    D.C. Cronemeyer, Phys. Rev. 87, 876 (1952)

    CAS  Article  Google Scholar 

  28. 28.

    MSP Francisco, V.R. Mastelaro, Chem. Mater. 14, 2514 (2002). doi:10.1021/cm011520b

    CAS  Article  Google Scholar 

  29. 29.

    R.A. Spurr Anal. Chem. 29, 760 (1957)

    CAS  Article  Google Scholar 

  30. 30.

    C. He, B. Tian, J. Zhang, J. Colloid Interface Sci. 344, 382 (2010). doi:10.1016/j.jcis.2010.01.002

    CAS  Article  Google Scholar 

  31. 31.

    A.A. Murashkina, P.D. Murzin, A.V. Rudakova, V.K. Ryabchuk, A.V. Emeline, D.W. Bahnemann, J. Phys. Chem. C 119, 24695 (2015). doi:10.1021/acs.jpcc.5b06252

    CAS  Article  Google Scholar 

  32. 32.

    B. Venugopal, B. Nandan, A. Ayyachamy et al., RSC Adv. 4, 6141 (2014). doi:10.1039/C3RA46378H

    CAS  Article  Google Scholar 

  33. 33.

    N. Khatun, E.G. Rini, P. Shirage, P. Rajput, S.N. Jha, S. Sen, Mater. Sci. Semicond. Process. 50, 7 (2016). doi:10.1016/j.mssp.2016.04.002

    CAS  Article  Google Scholar 

  34. 34.

    R. Palomino-Merino, P. Trejo-Garcia, O. Portillo-Moreno et al., Opt. Mater. 46, 345 (2015). doi:10.1016/j.optmat.2015.04.042

    CAS  Article  Google Scholar 

  35. 35.

    Y. Zhang, C.X. Harris, P. Wallenmeyer, J. Murowchick, X. Chen, J. Phys. Chem. C 117, 24015 (2013). doi:10.1021/jp406948e

    CAS  Article  Google Scholar 

  36. 36.

    J. Zhang, P. Zhou, J. Liu, J. Yu, Phys. Chem. Chem. Phys. 16, 20382 (2014). doi:10.1039/C4CP02201G

    CAS  Article  Google Scholar 

  37. 37.

    D.S. Dhawale, A.M. More, S.S. Latthe, K.Y. Rajpure, C.D. Lokhande, Appl. Sci. Res. 254, 3269 (2008). doi:10.1016/j.apsusc.2007.11.013

    CAS  Article  Google Scholar 

  38. 38.

    I. Ben Jemaa, F. Chaabouni, L. Presmanes et al., J. Mater. Sci. 27, 13242 (2016). doi:10.1007/s10854-016-5471-8

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Principle investigator expresses sincere thanks to the Indian Institute of Technology, Indore, India for funding the research and using the Sophisticated Instrument Centre (SIC) and also Mr. Kinni Pandey for helping to us during measurement of FESEM data. We are also thankful to Dr. Pankaj Sagdeo for providing the valuable UV–Vis data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Somaditya Sen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anita, Yadav, A.K., Khatun, N. et al. Size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation. J Mater Sci: Mater Electron 28, 19017–19024 (2017). https://doi.org/10.1007/s10854-017-7856-8

Download citation