Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis and magnetic characterization of Spinel ferrites MFe2O4 (M = Ni, Co, Zn and Cu) via chemical co-precipitation method

Abstract

Nanostructured ferrite spinels MFe2O4 (M = Ni, Co, Zn and Cu) were successfully synthesized via a chemical co-precipitation method. The structure, composition, optical, morphology and magnetic properties of the samples were characterised. The thermal decomposition of the MFe2O4 was investigated by TGA\DTA. X-ray diffraction (XRD) confirmed the formation of single phase MFe2O4 (M = Ni, Co, Zn and Cu) with space group Fd-3m and spinel structure and the crystallite size were found to be between 25 and 41 nm. SEM and TEM images showed cubic-like nanostructure. The Fourier transform infra-red (FT-IR) spectroscopy showed absorption bonds, which were assigned to the vibration of tetrahedral and octahedral complexes. Raman spectroscopy is used to verify that we have synthesized ferrite spinels and determines their phonon modes. The optical study UV–visible is used to calculate the band gap energies. The vibrating sample magnetometer (VSM) was used to obtain the hysteresis parameters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    K.H.J. Buschow, Concise Encyclopedia of Magnetic and Superconducting. (Elsevier, Amsterdam, 2005)

  2. 2.

    F. Li, H. Wang, L. Wang, J. Wang, J. Magn. Magn. Mater. 309, 295–299 (2007)

  3. 3.

    S.-Y. Zhao, R. Qiao, X.L. Zhang, Y.S. Kang, J. Phys. Chem. C 111, 7875–7878, (2007)

  4. 4.

    S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc. 126, 273–279 (2004)

  5. 5.

    H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem. Int. Ed. 44, 2782–2785 (2005)

  6. 6.

    T. Hyeon, Y. Chung, J. Park, S.S. Lee, Y.W. Kim, B.H. Park, J. Phys. Chem. B 106, 6831–6833 (2002)

  7. 7.

    S.R. Ahmed, P. Kofinas, Macromolecules. 35, 3338–3341 (2002)

  8. 8.

    L. Li, G. Li, R.L. Smith, H. Inomata, Chem. Mater. 12, 3705–3714 (2000)

  9. 9.

    V. Berbenni, C. Milanese, G. Bruni, A. Marini, I. Pallecchi, Thermochim. Acta. 447, 184–189 (2006)

  10. 10.

    H. Yang, X. Zhang, C. Huang, W. Yang, G. Qiu, J. Phys. Chem. Solids. 65, 1329–1332 (2004)

  11. 11.

    T. Meron, Y. Rosenberg, Y. Lereah, G. Markovich, J. Magn. Magn. Mater. 292, 11–16 (2005)

  12. 12.

    J. Park, J. Joo, S.G. Kwoon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46, 4630–4660 (2007)

  13. 13.

    D. Caruntu, B.L. Cushing, G. Caruntu, C.J. O’Connor, Chem. Mater. 17, 3398–3402 (2005)

  14. 14.

    M. Veith, M. Haas, V. Huch, Chem. Mater. 17, 95 (2005)

  15. 15.

    C. Yao, Q. Zeng, G. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J. Jiang, J. Phys. Chem. C 111, 12274–12278 (2007)

  16. 16.

    L. Wang, Q. Zhou, F. Li, Physica Status Solidi (B) 241, 377–382 (2004)

  17. 17.

    A. Kundu, C. Upadhyay, H. Verma, Phys. Lett. A 311, 410–415 (2003)

  18. 18.

    X. Hu, P. Guan, X. Yan, China Particuology. 2, 135–137 (2004)

  19. 19.

    R. Zhang, J. Huang, J. Zhao, Z. Sun, Y. Wang, Energy Fuels 21, 2682–2687 (2007)

  20. 20.

    B.R. Reddy, T. Sivasankar, M. Sivakumar, V.S. Moholkar, Ultrasonics Sonochem, 416–426 (2010)

  21. 21.

    Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3548–3552 (2006)

  22. 22.

    D. Gherca, A. Pui, N. Cornei, A. Cojocariu, V. Nica, O. Caltun, J. Magn. Magn. Mater 3906–3911 (2012)

  23. 23.

    V. Pallai, D.O. Shah, J. Magn. Magn. Mater. 163 243–248 (1996)

  24. 24.

    P. Scherrer, Gottinger Nachrichten Gesell 2, 98–100 (1918)

  25. 25.

    A. Pradeep, G. Chandrasekaran, Mater. Lett., 60, 371–374 (2006)

  26. 26.

    P. Chadramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Solid State Chem. 184, 89–96 (2011)

  27. 27.

    D. Varshney, K. Verma, A. Kumar, Mater. Chem. Phys. 131, 413–419 (2011)

  28. 28.

    J. Chandradass, H. Arvind, KiHyeon Jadhav, Hern Kim, Kim, J. Alloys Comp. 517, 164–169 (2012)

  29. 29.

    S.W. da Silva, F. Nakagomi, M.S. Silva, A. Franco Jr., V.K. Garg, A.C. Oliveira, P.C. Morais, J. Nanopart. Res. 14, 798 (2012)

  30. 30.

    P. Yaseneva, M. Bowker, G. Hutchings, Phys. Chem. Chem. Phys. 13, 18609–18614 (2011)

  31. 31.

    L. Li, J. Sol Gel Sci. Technol. 58, 677–681 (2011)

  32. 32.

    D. Varshney, K. Verma, A. Kumar, J.Mol. Struct. 1006, 447–452 (2011)

  33. 33.

    S. Sivakumar, D. Anusuya, C.P. Khatiwada, J. Sivasubramanian, A. Venkatesan, P. Soundhirarajan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 69–75 (2014)

  34. 34.

    S. Bagheri, K.G. Chandrappa., S. Bee Abd Hamid, Res. J. Chem. Sci. 3, 62–68 (2013)

  35. 35.

    S. Shen, C.X. Kronawitter, J. Jiang, S.S. Mao, L. Guo, Nano Res. 5, 327–336 (2012)

  36. 36.

    R. Branek, H. Kisch, Photochem. Photobiol. Sci. 7, 40–48 (2008)

  37. 37.

    J.I. Pankove, Optical Processes in Semiconductors. (Prentice-Hall Inc, Englewood Cliff, 1971), 34–86

  38. 38.

    M. Mohammadikish, Ceram. Int. 40, 1351–1358 (2014)

Download references

Acknowledgements

The present work was supported by the Research Funds of Electrochemistry, Materials and Environment Research Unit UREME (UR17ES45), Faculty of Sciences Gabes University, Tunisia and Structures, Properties and Modeling of Solids (SPMS) Laboratory, Ecole Centrale Paris, France.

Author information

Correspondence to Abdelmajid Lassoued.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lassoued, A., Ben hassine, M., Karolak, F. et al. Synthesis and magnetic characterization of Spinel ferrites MFe2O4 (M = Ni, Co, Zn and Cu) via chemical co-precipitation method. J Mater Sci: Mater Electron 28, 18857–18864 (2017). https://doi.org/10.1007/s10854-017-7837-y

Download citation