Skip to main content

Advertisement

Log in

Hydrothermal synthesis of the composited WS2–W5O14–MWCNTs for high performance dye-sensitized solar cell counter electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

WS2 and W18O49/W5O14 (WS 2–W 18O 49/W 5O 14) powders were synthesized using a hydrothermal reaction of microsized WO3 particles in a HCl + Na2S·9·H2O solution. The resulting WS 2–W 18O 49/W 5O 14 powders were used as a catalyst in a counter electrode of a dye-sensitized solar cell with an efficiency of 3.37%. To enhance the DSSC’s performance, multi-walled carbon nanotubes (MWCNTs) was added to the aforementioned hydrothermal reaction producing WS 2–W 5O 14–MWCNTs composite, which can enhance an efficiency of up to 7.44%, comparable to that of Pt DSSCs (7.53%). This outstanding performance of the WS 2–W 5O 14–MWCNTs based DSSCs is attributed to high electrocatalytic activity and low charge-transfer resistance at the counter electrode and electrolyte interface at the WS 2–W 5O 14–MWCNTs electrode. This facile and cost-effective fabrication of the composited WS 2–W 5O 14–MWCNTs CE could lead to applications in commercial DSSC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. O’Regan, M. Gratzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. J. Wu, Y. Xiao, Q. Tang, G. Yue, J. Lin, M. Huang, Y. Huang, L. Fan, Z. Lan, S. Yin, T. Sato, Adv. Mater. 24, 1884 (2012)

    Article  CAS  Google Scholar 

  3. K. Saranya, M. Rameez, A. Subramania, Eur. Polym. J. 66, 207 (2015)

    Article  CAS  Google Scholar 

  4. S. Hwang, M. Batmunkh, M.J. Nine, H. Chung, H. Jeong, ChemPhysChem 16, 53 (2015)

    Article  CAS  Google Scholar 

  5. H. Choi, H. Kim, S. Hwang, Y. Han, M. Jeon, J. Mater. Chem. 21, 7548 (2011)

    Article  CAS  Google Scholar 

  6. P. Uppachai, V. Harnchana, S. Pimanpang, V. Amornkitbamrung, A.P. Brown, R.M.D. Brydson, Electrochim. Acta 145, 27 (2014)

    Article  CAS  Google Scholar 

  7. H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo, Q. Meng, Energy Environ. Sci. 4, 2630 (2011)

    Article  CAS  Google Scholar 

  8. M. Wang, A.M. Anghel, B. Marsan, N.-L. Cevey Ha, N. Pootrakulchote, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 131, 15976 (2009)

    Article  CAS  Google Scholar 

  9. Y. Xiao, J. Wu, J.-Y. Lin, S.-Y. Tai, G. Yue, J. Mater. Chem. A 1, 1289 (2013)

    Article  CAS  Google Scholar 

  10. Y. Xiao, J. Wu, J. Lin, G. Yue, J. Lin, M. Huang, Y. Huang, Z. Lan, L. Fan, J. Mater. Chem. A 1, 13885 (2013)

    Article  CAS  Google Scholar 

  11. M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Energy Environ. Sci. 4, 2308 (2011)

    Article  CAS  Google Scholar 

  12. R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360, 444 (1992)

    Article  CAS  Google Scholar 

  13. D. Merki, X. Hu, Energy Environ. Sci. 4, 3878 (2011)

    Article  CAS  Google Scholar 

  14. D.M. Andoshe, J.-M. Jeon, S.Y. Kim, H.W. Jang, Electron. Mater. Lett. 11, 323 (2015)

    Article  CAS  Google Scholar 

  15. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 12, 850 (2013)

    Article  CAS  Google Scholar 

  16. S. Li, Z. Chen, W. Zhang, Mater. Lett. 72, 22 (2012)

    Article  CAS  Google Scholar 

  17. M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldt, T. Ma, Phys. Chem. Chem. Phys. 13, 19298 (2011)

    Article  CAS  Google Scholar 

  18. J. Wu, G. Yue, Y. Xiao, M. Huang, J. Lin, L. Fan, Z. Lan, J.-Y. Lin, ACS Appl. Mater. Interfaces 4, 6530 (2012)

    Article  CAS  Google Scholar 

  19. G. Yue, J. Wu, J.-Y. Lin, Y. Xiao, S.-Y. Tai, J. Lin, M. Huang, Z. Lan, Carbon 55, 1 (2013)

    Article  CAS  Google Scholar 

  20. M. Wu, X. Lin, A. Hagfeldt, T. Ma, Chem. Commun. 47, 4535 (2011)

    Article  CAS  Google Scholar 

  21. M. Wu, X. Lin, L. Wang, W. Guo, Y. Wang, J. Xiao, A. Hagfeldt, T. Ma, J. Phys. Chem. C 115, 22598 (2011)

    Article  CAS  Google Scholar 

  22. A.L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A.D. Long, T. Hayashi, Y.A. Kim, M. Endo, H.R. Gutiérrez, N.R. Pradhan, L. Balicas, T.E. Mallouk, F. López-Urías, H. Terrones, M. Terrones, ACS Nano 7, 5235 (2013)

    Article  Google Scholar 

  23. Z. Wu, D. Wang, X. Zan, A. Sun, Mater. Lett. 64, 856 (2010)

    Article  CAS  Google Scholar 

  24. J. Ouerfelli, S.K. Srivastava, J.C. Bernède, S. Belgacem, Vacuum 83, 308 (2008)

    Article  CAS  Google Scholar 

  25. X. Zhang, W. Lei, X. Ye, C. Wang, B. Lin, H. Tang, C. Li, Mater. Lett. 159, 399 (2015)

    Article  CAS  Google Scholar 

  26. H.A. Therese, J. Li, U. Kolb, W. Tremel, Solid State Sci. 7, 67 (2005)

    Article  CAS  Google Scholar 

  27. M. Yoshimura, K. Byrappa, J. Mater. Sci. 43, 2085 (2008)

    Article  CAS  Google Scholar 

  28. R.M. Patil, P.B. Shete, N.D. Thorat, S.V. Otari, K.C. Barick, A. Prasad, R.S. Ningthoujam, B.M. Tiwale, S.H. Pawar, RSC Adv. 4, 4515 (2014)

    Article  CAS  Google Scholar 

  29. I.J. McColm, R. Steadman, S.J. Wilson, J. Solid State Chem. 23, 33 (1978)

    Article  CAS  Google Scholar 

  30. M. Remškar, J. Kovac, M. Viršek, M. Mrak, A. Jesih, A. Seabaugh, Adv. Funct. Mater. 17, 1974 (2007)

    Article  Google Scholar 

  31. G.L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro, R. Tenne, J. Solid State Chem. 162, 300 (2001)

    Article  CAS  Google Scholar 

  32. J.A. Dean, Lange’s Handbook of Chemistry, (McGRAW-HILL, INC., New York, 1999)

    Google Scholar 

  33. Y. Nishikitani, T. Kubo, T. Asano, C.R. Chim, Langmuir 9, 631 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Research Fund, Srinakharinwirot University and Khon Kaen University (RSA5880035), by the Center of Excellence in Physics (ThEP), by the Integrated Nanotechnology Center, Khon Kaen University, by the National Nanotechnology Center (NANOTEC), NSTD, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network, and by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen University. V. H. would like to acknowledge the support from the Development and Promotion of Science and Technology Talents Project (DPST) and the Institute for the Promotion of Teaching Science and Technology (IPST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viyada Harnchana or Samuk Pimanpang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keawphaisan, L., Harnchana, V., Pimanpang, S. et al. Hydrothermal synthesis of the composited WS2–W5O14–MWCNTs for high performance dye-sensitized solar cell counter electrodes. J Mater Sci: Mater Electron 28, 18765–18772 (2017). https://doi.org/10.1007/s10854-017-7825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7825-2

Navigation