Skip to main content
Log in

Physicochemical characterisation of graphene oxide and reduced graphene oxide composites for electrochemical capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim was to prepare mesoporous composites of graphene oxide (GO) and titania with improved physicochemical properties for use as electrodes in electrochemical double layer capacitors (EDLCs). This was done by using a known amount of titania (5, 10, 20 and 40 wt%) to synthesise graphene oxide-titania (GOTi), reduced graphene oxide-titania (RGOTi) and nanocrystalline cellulose (NCC) reduced graphene oxide-titania (CRGTi) composites by sol–gel method. Titania positively impacted the exfoliation of GO sheets but excess amounts culminated in large titania agglomerates in the composites. The carbon-oxygen-titanium interactions, facilitated by oxygen moieties, were strongest in the GOTi composites. The reduction of GOTi, to form RGOTi, enhanced the surface area from 136.89 to 434.24 m2 g− 1 for the 5 wt% titania composites. The RGOTi composites were more defective than the GOTi ones with an ID/IG ratio of 1.13 and 0.88, respectively, at 40 wt% titania. Inclusion of NCC in the synthesis of RGOTi composites enhanced the surface areas relative to those of both GOTi and RGOTi at 10–40 wt% titania. The 5 wt% titania RGOTi composite displayed the best EDLC quality with the highest specific capacitance of 45 F g− 1 in sodium sulfate electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M.V. Kiamahalleh, SHS Zein, Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials. NANO 7(2), 1–27 (2012)

    Article  Google Scholar 

  2. DDL Chung, A review of exfoliated graphite. J. Mater. Sci. 51(1), 554–568 (2015). doi:10.1007/s10853-015-9284-6

    Article  CAS  Google Scholar 

  3. T. Chen, Y. Fan, G. Wang, J. Zhang, H. Chuo, R. Yang, Rationally designed carbon fiber@NiCo2O4@polypyrrole core–shell nanowire array for high-performance supercapacitor electrodes. Nano 11(02), 1650015 (2016). doi:10.1142/s1793292016500156

    Article  CAS  Google Scholar 

  4. J. Lee, K. Lee, S.S. Park, Environmentally friendly preparation of nanoparticle-decorated carbon nanotube or graphene hybrid structures and their potential applications. J. Mater. Sci. 51(6), 2761–2770 (2015). doi:10.1007/s10853-015-9581-0

    Article  CAS  Google Scholar 

  5. E.T. Mombeshora, R. Simoyi, V.O. Nyamori, P.G. Ndungu, Multiwalled carbon nanotube-titania nanocomposites: understanding nano-structural parameters and functionality in dye-sensitized solar cells. S. Afr. J. Chem. 68, 153–164 (2015). doi:10.17159/0379-4350/2015/v68a22

    Article  CAS  Google Scholar 

  6. Y. Bai, M. Du, J. Chang, J. Sun, L. Gao, Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes. J. Mater. Chem. A 2(11), 3834–3840 (2014). doi:10.1039/c3ta15004f

    Article  CAS  Google Scholar 

  7. J. Durantini, P.P. Boix, M. Gervaldo, G.M. Morales, L. Otero, J. Bisquert, E.M. Barea, Photocurrent enhancement in dye-sensitized photovoltaic devices with titania–graphene composite electrodes. J. Electroanal. Chem. 683, 43–46 (2012). doi:10.1016/j.jelechem.2012.07.032

    Article  CAS  Google Scholar 

  8. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, Hierarchically ordered macro mesoporous TiO2 graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. Am. Chem. Soc. Nano 5(1), 590–596 (2011)

    CAS  Google Scholar 

  9. Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H(2)-production activity of graphene-modified titania nanosheets. Nanoscale 3(9), 3670–3678 (2011). doi:10.1039/c1nr10610d

    Article  CAS  Google Scholar 

  10. A.F. Gualdrón-Reyes, A.M. Meléndez, M.E. Niño-Gómez, V. Rodríguez-González, M.I. Carreño-Lizcano, Photoanodes modified with reduced graphene oxide to enhance photoelectrocatalytic performance of B-TiO2 under visible light. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 39(Supl.), 77 (2015). doi:10.18257/raccefyn.252

    Article  Google Scholar 

  11. W. Geng, H. Liu, X. Yao, Enhanced photocatalytic properties of titania-graphene nanocomposites: a density functional theory study. Phys. Chem. Chem. Phys. 15(16), 6025–6033 (2013). doi:10.1039/c3cp43720e

    Article  CAS  Google Scholar 

  12. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C 113:19812–19823 (2009)

    Article  CAS  Google Scholar 

  13. L.-L. Qu, N. Wang, Y.-Y. Li, D.-D. Bao, G.-H. Yang, H.-T. Li, Novel titanium dioxide–graphene–activated carbon ternary nanocomposites with enhanced photocatalytic performance in rhodamine B and tetracycline hydrochloride degradation. J. Mater. Sci. 52(13), 8311–8320 (2017). doi:10.1007/s10853-017-1047-0

    Article  CAS  Google Scholar 

  14. V.C. Anitha, N. Hamnabard, A.N. Banerjee, G.R. Dillip, S.W. Joo, Enhanced electrochemical performance of morphology-controlled titania-reduced graphene oxide nanostructures fabricated via a combined anodization-hydrothermal process. RSC Adv. 6(15), 12571–12583 (2016). doi:10.1039/c5ra23722j

    Article  CAS  Google Scholar 

  15. N.J. Bell, Y.H. Ng, A. Du, H. Coster, S.C. Smith, R. Amal, Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite. J. Phys. Chem. C 115(13), 6004–6009 (2011). doi:10.1021/jp1113575

    Article  CAS  Google Scholar 

  16. O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 113, 20214–20220 (2009)

    Article  CAS  Google Scholar 

  17. H. Zhang, P. Xu, G. Du, Z. Chen, K. Oh, D. Pan, Z. Jiao, A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res. 4(3), 274–283 (2010). doi:10.1007/s12274-010-0079-4

    Article  CAS  Google Scholar 

  18. J. Sun, H. Zhang, L.H. Guo, L. Zhao, Two-dimensional interface engineering of a titania-graphene nanosheet composite for improved photocatalytic activity. ACS Appl. Mater. Interfaces 5(24), 13035–13041 (2013). doi:10.1021/am403937y

    Article  CAS  Google Scholar 

  19. T. Rath, P.P. Kundu, Reduced graphene oxide paper based nanocomposite materials for flexible supercapacitors. RSC Adv. 5(34), 26666–26674 (2015). doi:10.1039/c5ra00563a

    Article  CAS  Google Scholar 

  20. C.-J. Kim, W. Khan, D.-H. Kim, K.-S. Cho, S.-Y. Park, Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydr. Polym. 86(2), 903–909 (2011). doi:10.1016/j.carbpol.2011.05.041

    Article  CAS  Google Scholar 

  21. L. Valentini, M. Cardinali, E. Fortunati, L. Torre, J.M. Kenny, A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater. Lett. 105, 4–7 (2013). doi:10.1016/j.matlet.2013.04.034

    Article  CAS  Google Scholar 

  22. D. Han, L. Yan, W. Chen, W. Li, P.R. Bangal, Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr. Polym. 83(2), 966–972 (2011). doi:10.1016/j.carbpol.2010.09.006

    Article  CAS  Google Scholar 

  23. Y. Liu, H. Wang, G. Yu, Q. Yu, B. Li, X. Mu, A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr. Polym. 110, 415–422 (2014). doi:10.1016/j.carbpol.2014.04.040

    Article  CAS  Google Scholar 

  24. S. Montes, P.M. Carrasco, V. Ruiz, G. Cabañero, H.J. Grande, J. Labidi, I. Odriozola, Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Compos. Sci. Technol. 117, 26–31 (2015). doi:10.1016/j.compscitech.2015.05.018

    Article  CAS  Google Scholar 

  25. E.T. Mombeshora, P.G. Ndungu, V.O. Nyamori, Effect of graphite/sodium nitrate ratio and reaction time on the physicochemical properties of graphene oxide. New Carbon Mater. 32(1), 174–187 (2017)

    Article  Google Scholar 

  26. H.S. Wahab, S.H. Ali, A.M.A. Hussein, Synthesis and characterization of graphene by Raman spectroscopy. J. Mater. Sci. Appl. 1(3), 130–135 (2015)

    Google Scholar 

  27. D. Kostiuk, M. Bodik, P. Siffalovic, M. Jergel, Y. Halahovets, M. Hodas, M. Pelletta, M. Pelach, M. Hulman, Z. Spitalsky, M. Omastova, E. Majkova, Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy. J. Raman Spectrosc. 47(4), 391–394 (2016). doi:10.1002/jrs.4843

    Article  CAS  Google Scholar 

  28. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). doi:10.1021/nn1006368

    Article  CAS  Google Scholar 

  29. M. Xu, Q. Huang, X. Wang, R. Sun, Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Ind. Crops Prod. 70, 56–63 (2015). doi:10.1016/j.indcrop.2015.03.004

    Article  CAS  Google Scholar 

  30. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst. American Chemical Society 4(1), 380–386 (2010)

    CAS  Google Scholar 

  31. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2(6), 949–956 (2012). doi:10.1021/cs200621c

    Article  CAS  Google Scholar 

  32. W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-Spacing. Chem. Mater. 26(9), 2983–2990 (2014). doi:10.1021/cm5007873

    Article  CAS  Google Scholar 

  33. A.A. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 19491 (2016). doi:10.1038/srep19491

    Article  CAS  Google Scholar 

  34. R. Atchudan, A. Pandurangan, J. Joo, Synthesis of multilayer graphene balls on mesoporous Co-MCM-41 molecular sieves by chemical vapour deposition method. Microporous Mesoporous Mater. 175, 161–169 (2013)

    Article  CAS  Google Scholar 

  35. L.-L. Tan, W.-J. Ong, S.-P. Chai, A.R. Mohamed, Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 8(465), 1–9 (2013)

    Google Scholar 

  36. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). doi:10.1039/b917103g

    Article  CAS  Google Scholar 

  37. K. Sing, The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf. A 187–188, 3–9 (2001)

    Article  Google Scholar 

  38. Y.H. Tan, J.A. Davis, K. Fujikawa, N.V. Ganesh, A.V. Demchenko, K.J. Stine, Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J. Mater. Chem. 22(14), 6733–6745 (2012). doi:10.1039/C2JM16633J

    Article  CAS  Google Scholar 

  39. E.T. Mombeshora, V.O. Nyamori, A review on the use of carbon nanostructured materials in electrochemical capacitors. Int. J. Energy Res. 39(15), 1955–1980 (2015). doi:10.1002/er.3423

    Article  CAS  Google Scholar 

  40. E.P. Barrett, E.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Vol. Area Distrib. Porous Subst. 73, 373–380 (1951)

    CAS  Google Scholar 

  41. D. He, Y. Li, J. Wang, Y. Yang, Q. An, Tunable nanostructure of tio2/reduced graphene oxide composite for high photocatalysis. Appl. Microsc. 46(1), 37–44 (2016). doi:10.9729/am.2016.46.1.37

    Article  Google Scholar 

  42. X. Luan, M.T. Gutierrez Wing, Y. Wang, Enhanced photocatalytic activity of graphene oxide/titania nanosheets composites for methylene blue degradation. Mater. Sci. Semicond. Process. 30, 592–598 (2015). doi:10.1016/j.mssp.2014.10.032

    Article  CAS  Google Scholar 

  43. E.T. Mombeshora, P.G. Ndungu, ALL Jarvis, V.O. Nyamori, Oxygen-modified multiwalled carbon nanotubes: physicochemical properties and capacitor functionality. Int. J. Energy Res. (2017). doi:10.1002/er.3702

    Article  Google Scholar 

  44. Y. Wang, M. Liu, Y. Liu, J. Luo, X. Lu, J. Sun, A novel mica-titania@graphene core-shell structured antistatic composite pearlescent pigment. Dyes Pigm. 136, 197–204 (2017)

    Article  CAS  Google Scholar 

  45. J. Wang, S.A. Kondrat, Y. Wang, G.L. Brett, C. Giles, J.K. Bartley, L. Lu, Q. Liu, C.J. Kiely, G.J. Hutchings, Au–Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catal. 5(6), 3575–3587 (2015). doi:10.1021/acscatal.5b00480

    Article  CAS  Google Scholar 

  46. K. Mugadza, V.O. Nyamori, G.T. Mola, R.H. Simoyi, P.G. Ndungu, Low temperature synthesis of multiwalled carbon nanotubes and incorporation into an organic solar cell. J. Exp. Nanosci. (2017). doi:10.1080/17458080.2017.1357842

    Article  Google Scholar 

  47. V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Mater. Sci. Eng 193, 49–60 (2015). doi:10.1016/j.mseb.2014.11.002

    Article  CAS  Google Scholar 

  48. R. Beams, L. Gustavo Cancado, L. Novotny, Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 27(8), 083002 (2015). doi:10.1088/0953-8984/27/8/083002

    Article  CAS  Google Scholar 

  49. D. Maruthamani, D. Divakar, M. Harshavardhan, M. Kumaravel, Evaluation of bactericidal activity of reduced graphene oxide supported titania nanoparticles under visible light irradiation. J. Chem. Pharm. Res. 8(1), 236–244 (2016)

    CAS  Google Scholar 

  50. P. Georgios, S.M. Wolfgang, X-ray photoelectron spectroscopy of anatase-TiO2 coated carbon nanotubes. Solid State Phenomena 162, 163–177 (2010)

    Article  CAS  Google Scholar 

  51. J.-Y. Ruzicka, F.A. Bakar, L. Thomsen, B.C. Cowie, C. McNicoll, T. Kemmitt, H.E.A. Brand, B. Ingham, G.G. Anderssonf, V.B. Golovko, XPS and NEXAFS study of fluorine modified TiO2 nano-ovoids reveals dependence of Ti3+ surface population on the modifying agent. RSC Adv. 4, 20649–20658 (2014)

    Article  CAS  Google Scholar 

  52. Y.-Y. Dong, S. Liu, Y.-J. Liu, L.-Y. Meng, M.-G. Ma, Ag@Fe3O4@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution. J. Mater. Sci. 52(13), 8219–8230 (2017). doi:10.1007/s10853-017-1038-1

    Article  CAS  Google Scholar 

  53. J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Synthesis and electrochemical performance of MnO2/CNTs–embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim. Acta 75, 213–219 (2012). doi:10.1016/j.electacta.2012.04.088

    Article  CAS  Google Scholar 

  54. Z. Zhou, X.-F. Wu, High-performance porous electrodes for pseudosupercapacitors based on graphene-beaded carbon nanofibers surface-coated with nanostructured conducting polymers. J. Power Sources 262, 44–49 (2014)

    Article  CAS  Google Scholar 

  55. Y.S. Yun, S. Lee, N.R. Kim, M. Kang, C. Leal, K.-Y. Park, K. Kang, H.-J. Jin, High and rapid alkali cation storage in ultramicroporous carbonaceous materials. J. Power Sources 313, 142–151 (2016). doi:10.1016/j.jpowsour.2016.02.068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr Vashen Moodley and Prof Werner van Zyl for their generous donation of NCC used for the synthesis of CRGTi composites. We thank Prof Martincigh for proofreading the manuscript. The authors are also grateful to the University of KwaZulu-Natal (UKZN) and UKZN Nanotechnology Platform for the facilities used in this work and a partial study bursary for Mr ETM, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent O. Nyamori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1033 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mombeshora, E.T., Nyamori, V.O. Physicochemical characterisation of graphene oxide and reduced graphene oxide composites for electrochemical capacitors. J Mater Sci: Mater Electron 28, 18715–18734 (2017). https://doi.org/10.1007/s10854-017-7821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7821-6

Navigation