Skip to main content
Log in

Low temperature sintering process, phase evolution and dielectric properties of BaTi4O9-filled B–La–Mg–Ti–O glass/ceramic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low temperature co-fired ceramics composite is fabricated by mixing B2O3–La2O3–MgO–TiO2 (BLMT) glass matrix with BaTi4O9 ceramic filler and the influence of the filler on sintering behavior, phase composition, microstructure and dielectric properties of the composite is investigated. The results show that the densification of composites can be achieved at 860 °C for 20 min by three-stage reactive liquid assisted sintering process, consisting of glass redistribution and local grains rearrangement, viscous flow, and solid state sintering and closure of pores. The XRD patterns exhibit that the main phase of all samples is LaBO3 phase formed from the crystallization of BLMT glass and the secondary phases have changed due to chemical reaction between BLMT glass and BaTi4O9 forming two new phases BaTi(BO3)2 and TiO2 during sintering. Meanwhile, the microstructure results indicate that the reaction helps to eliminate the closed pores in composites. As the filler is increased, the dielectric constant and quality factor firstly increases and then decreases, while the temperature coefficient of resonant frequency increases. Typically, the 30 wt% BaTi4O9-filled BLMT glass composite sintered at 860 °C for 20 min displays dielectric properties of εεr = 20.49, Q × f = 24000 GHz and ττf = +145 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yoshihiko, Imanak, Multilayered low temperature cofired ceramics (LTCC) technology. (Springer, Japan, 2005)

    Google Scholar 

  2. H.F. Zhou, X.H. Tan, J. Huang, K.G. Wang, W.D. Sun, X.L. Chen, J Mater Sci. 28, 11439–11445 (2017)

    CAS  Google Scholar 

  3. M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392–412 (2015)

    Article  Google Scholar 

  4. Technical publication of FERRO TAPE-A6, Ferro Corp., Santa Barbara, CA, 1996

  5. R.R. Tummala, J. Am. Ceram. Soc. 74, 895–908 (1991)

    Article  CAS  Google Scholar 

  6. J.I. Steinberg, S.J. Horowitz, R.J. Bacher, Multilayer Ceram. Devices 19, 31–39 (1986)

    CAS  Google Scholar 

  7. H.I. Hsiang, S.W. Yung, C.C. Wang, Mater. Res. Bull. 60, 730–737 (2014)

    Article  CAS  Google Scholar 

  8. L. Song, Z. Li, G.H. Li, Y.S. Li, S.J. Jiang, Y.Q. Huang, Y. Shen, J. Mater. Sci. 27, 8504–8511 (2016)

    CAS  Google Scholar 

  9. A.M. Yang, H.X. Lin, L. Luo, W. Chen, Jpn. J. Appl. Phys. 45, 1698–1701 (2006)

    Article  CAS  Google Scholar 

  10. X.Y. Chen, S.X. Bai, M. Li, W.J. Zhang., J. Eur. Ceram. Soc. 33, 3001–3006 (2013)

    Article  CAS  Google Scholar 

  11. H.M. O’Bryan, J. Thomson, J.K. Plourde, J. Am. Ceram. Soc. 57, 450–453 (1974)

    Article  Google Scholar 

  12. X. Wang, R.L. Fu, Y. Xu, J. Mater. Sci. 28, 4328–4332 (2017)

    CAS  Google Scholar 

  13. S.Q. Yu, B. Tang, S.R. Zhang, X. Zhang, Mater. Lett. 67, 293–295 (2012)

    Article  CAS  Google Scholar 

  14. K. Ju, H.T. Yu, L. Ye, G.L. Xu, J. Am. Ceram. Soc. 96, 3563–3568 (2013)

    Article  CAS  Google Scholar 

  15. C.J. Dileep Kumar, T.K. Sowmya, E.K. Sunny, N. Raghu, J. Am. Ceram. Soc. 92, 595–600 (2009)

    Article  Google Scholar 

  16. X.Y. Chen, W.J. Zhang, S.X. Bai, Y.G. Du, Ceram. Int. 39, 6355–6361 (2013)

    Article  CAS  Google Scholar 

  17. J.H. Jean, S.C. Lin, J. Mater. Res. 14, 1359–1363 (1999)

    Article  CAS  Google Scholar 

  18. B. Tang, F.C. Luo, H.T. Chen, S.Q. Yu, S.R. Zhang, J. Mater. Sci. 26, 7140–7145 (2015)

    CAS  Google Scholar 

  19. Y.J. Chu, J.H. Jean, Ceram. Int. 39, 5151–5158 (2013)

    Article  CAS  Google Scholar 

  20. H.S. Ren, T.Y. Xie, M.Z. Dang, S.H. Jiang, H.X. Lin, L. Luo, Ceram. Int. 43, 12863–12869 (2017)

    Article  CAS  Google Scholar 

  21. T. Takada, H. Yamamoto, K. Kageyama, Jpn. J. Appl. Phys. 42, 6162–6167 (2003)

    Article  CAS  Google Scholar 

  22. W. Huang, K.S. Liu, L.W. Chu, G.H. Hsiue, I.N. Lin, J. Eur. Ceram. Soc. 23, 2559–2563 (2003)

    Article  CAS  Google Scholar 

  23. B. Li, D.N. Duan, Q.Y. Long, J. Mater. Sci. 27, 7240–7245 (2016)

    CAS  Google Scholar 

  24. G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haishen Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Yao, X., Xie, T. et al. Low temperature sintering process, phase evolution and dielectric properties of BaTi4O9-filled B–La–Mg–Ti–O glass/ceramic composites. J Mater Sci: Mater Electron 28, 18646–18655 (2017). https://doi.org/10.1007/s10854-017-7814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7814-5

Navigation