Skip to main content
Log in

Electrochemical migration of Ni and ENIG surface finish during Environmental test contaminated by NaCl

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrochemical migration (ECM) mechanism occurs at the presence of moisture in the case of operating circuits and results in shorts (dendrites) between adjacent conductor lines/traces. Dendrite growth occurs as a result of metal ions being dissolved into a solution from the anode and deposited at the cathode, thereby growing in tree-like formations. In this study the water condensation process and ECM behavior of Nickel (Ni), Electroless Nickel Immersion Gold (ENIG) and pure copper were investigated using Thermal Humidity and Bias (THB) test in NaCl environment. The THB results show that Cu has higher ECM resistance than Ni and ENIG surface finishes, which was an unexpected result. The main influencing factors of the water condensation (e.g.: surface roughness, thermal parameters) and the ECM processes (precipitates and dendrites) were investigated and discussed in details. Furthermore, a novel ECM model for Ni and NiAu surface finish was established using THB test in case NaCl contaminated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Verdingovas, M.S. Jellesen, R. Ambat, J. Electron. Mater. 44, 1116 (2015)

    Article  CAS  Google Scholar 

  2. X. Zhong, G. Zhang, Y. Qiu, Z. Chen, X. Guo, C. Fu, Corros. Sci. 66, 14 (2013)

    Article  CAS  Google Scholar 

  3. G. Harsányi, IEEE Electron Device Lett. 20, 5 (1999)

    Article  Google Scholar 

  4. X. Zhong, S. Yu, L. Chen, J. Hu, Z. Zhang, J. Mater. Sci. 28, 2279 (2017)

    CAS  Google Scholar 

  5. G. Harsányi, IEEE Trans. Compon. Packag. Manuf. Technol. 18, 602 (1995)

    Article  Google Scholar 

  6. Z. Sheng, M.H. Azarian, M. Pecht, IEEE Trans. Device Mater. Reliab. 8, 426 (2008)

    Article  Google Scholar 

  7. G.W. Warren, P. Wynblatt, M. Zamanzadeh, J. Electron. Mater. 18, 339 (1989)

    Article  CAS  Google Scholar 

  8. G. Ripka, G. Harsányi, Electrocompon. Sci. Technol. 11, 281 (1985)

    Article  CAS  Google Scholar 

  9. A. DerMarderosian, “The Electrochemical Migration of Metals”, Proceedings of the 11th International Microelectronics Symposium, p. 134 (1978)

  10. N.L. Sbar, IEEE Trans. Parts Hybrids Packag. 12, 76 (1986)

    Google Scholar 

  11. A. Christou, J.R. Griffith, B.R. Wilkins, IEEE Trans. Electron Devices 26, 77 (1979)

    Article  Google Scholar 

  12. F.J. Grunthaner, T.W. Griswold, P.J. Clendening, “Migratory Gold Resistive Shorts: Chemical Aspects of a Failure Mechanism”, Proceedings of the 13th IEEE International Reliability Physics Symposium, p. 99 (1975)

  13. J. Wright, “Reliability Improvements of Plastic Semiconductors Using Gold Metalization”, Proceedings of the 11th IEEE International Reliability Physics Symposium, p. 224 (1973)

  14. A. Shumka, R.R. Piety, “Migrated-Gold Resistive Shorts in Microcircuits”, Proceedings of the 13th IEEE International Reliability Physics Symposium, p. 93 (1975)

  15. E.B. Hakim, I.R. Shappiro, Solid State Technol. 4, 66 (1975)

    Google Scholar 

  16. G. Harsányi, Microelectron. Reliab. 39, 1407 (1999)

    Article  Google Scholar 

  17. J.M. Gaur, G.M. Schmid, Electroanal. Chem. Interfacial Electrochem. 24, 279 (1970)

    Article  CAS  Google Scholar 

  18. B.I. Noh, J.B. Lee, S.B. Jung, Microelectron. Reliab. 48, 652 (2008)

    Article  CAS  Google Scholar 

  19. B.I. Noh, J.W. Yoon, W.S. Hong, S.B. Jung, J. Electron. Mater. 38, 902 (2009)

    Article  CAS  Google Scholar 

  20. M. Kohara, Y. Mashiko, K. Nakazaki, M. Nunoshita, “Mechanism of Electromigration in Ceramic Package Induced by Chip-Coating Polyomide”, Proceedings of the 40th IEEE Electronic Components Conference, p. 894 (1990)

  21. L.C. Matthew, D.L. Rath, “The Waterdrop Test—Highly Accelerated Migration Testing”, Materials Developments in Microelectronic Packaging Conference Proceedings, p. 353 (1991)

  22. T. Kawanobe, K. Otsuka, “Metal Migration in Electronic Components”, Proceedings of the 32nd IEEE Electronic Components Conference, p. 220 (1982)

  23. P. Dumoulin, J.P. Seurin, Marce, “Metal Migrations Outside the Package During Accelerated Life Tests”, Proceedings of the 32nd IEEE Electronic Components Conference, p. 98 (1982)

  24. D.D. Chang, J.A. Fulton, H.C. Ling, M.B. Schmidt, R.E. Sinitski, C.P. Wong, Accelerated Life Test of Z-Axis Conductive Adhesives”, IEEE International Reliability Physics Symposium, p. 211 (1993)

  25. B. Rudra, M. Li, M. Pecht, D. Jennings, Circuit World 22, 67 (1995)

    Article  Google Scholar 

  26. G. Harsányi, “Material Design Aspects of High Reliability, High Density Interconnects”, Proceedings of the International Conference on Electronic Materials, Hsinchu, p. 225 (1994)

  27. B. Medgyes, B. Illés, R. Berényi, G. Harsányi, J. Mater. Sci. 22, 694 (2011)

    CAS  Google Scholar 

  28. Y.S. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolaou, Thermophysical Properties of Matter-The TPRC Data Series, vol 10. Thermal Diffusivity, 1st edn. (IFI/PLENUM, New York, 1974), pp. 35–36

    Google Scholar 

  29. D.R. Lide, Handbook of Chemistry and Physics, 90th edn., (CRC Press: Taylor and Francis Group, Boca Raton, 2009), pp. 8–127

    Google Scholar 

  30. A.G. Massey, N.R. Thompson, B.F.G. Johnson, R. Davis, The Chemistry of Copper, Silver and Gold, 2nd edn. (Pergamon Press, New York, 1975), pp. 28–29

    Google Scholar 

  31. D. Starosvetsky, N. Sezin, E. Abelev, T. Cohen-Hyams, Y. Ein-Eli, J. Electrochem. Soc 161, C77 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work reported in this paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The Author would like to also thank the support for the National Research, Development and Innovation Office—NKFIH, PD 120898. Finally, the Author would like thank to EFI-labs for the SEM-EDX investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bálint Medgyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medgyes, B. Electrochemical migration of Ni and ENIG surface finish during Environmental test contaminated by NaCl. J Mater Sci: Mater Electron 28, 18578–18584 (2017). https://doi.org/10.1007/s10854-017-7806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7806-5

Navigation