Skip to main content

Advertisement

Log in

Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the structural, morphological and spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide perovskite phosphors are reported. The samples were synthesized by solid state reaction route with different doping concentrations of Eu3+ and Tb3+ ions. These synthesized phosphors were characterized by PXRD for structural analysis. The phosphors report orthorhombic structure with average crystallite size of 48 nm. FESEM and HRTEM analysis were done here for topographical and morphological studies. Also, the FTIR spectra of synthesized samples were investigated for functional group analysis. Photoluminescence and thermoluminescence spectra of synthesized samples were studied. On subjecting to 230 nm excitation, the phosphors give three distinct emissions of 596, 610 and 690 nm in the visible region corresponding to 5D07F1, 5D07F2 and 5D07F4 of Eu3+ ions. The synthesized samples were also subjected to CIE and Afterglow decay analysis. The average decay lifetime is recorded as 56.24 ns confirming the luminescence decay characteristics of short duration. In TL analysis of these phosphors, second-order kinetics with low activation energy varying from 0.50002 to 0.65668 eV is reported. The enhanced optical characteristics of prepared perovskite phosphor substantiate it as a proficient alternative for photovoltaic, optical and sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.K. Thomas, H. Padma Kumar, R. Pazhani, S. Solomon, R. Jose, J. Koshy, Synthesis of strontium zirconate as nanocrystals through a single step combustion process. Mater. Lett. 61, 1592–1595 (2007)

    CAS  Google Scholar 

  2. B.S. Cao, J.L. Wu, Z.Q. Feng, B. Dong, Investigation of near-infrared-to-ultraviolet upconversion luminescence of Tm3+ doped NaYF4 phosphors by Yb3+ codoping. Mater. Chem. Phys. 142, 333–338 (2013)

    CAS  Google Scholar 

  3. Y. Dwivedi, S.C. Zilio, Advances in rare earth spectroscopy and applications. J. Nanosci. Nanotechnol. 14, 1578–1596 (2014)

    CAS  Google Scholar 

  4. R. Vali, Band structure and dielectric properties of orthorhombic SrZrO3. Solid State Commun. 145, 497–501 (2008)

    CAS  Google Scholar 

  5. N. Sata, H. Matsuta, Y. Akiyama, Y. Chiba, S. Shin, M. Ishigame, Fabrication of proton conducting thin films of SrZrO3 and SrCeO3 and theirfundamentalcharacterization. Solid State Ion. 97, 437–441 (1997)

    CAS  Google Scholar 

  6. X. Jianhui, M. Qingyu, S. Wenjun, Luminescent properties and energy transfer mechanism from Tb3+ to Eu3+ in CaMoO4:Tb3+, Eu3+ phosphors. J. Rare Earth 34(No. 3), 251 (2016)

    Google Scholar 

  7. J. Ye, Z. Hongpeng, Z. Dingfei, Luminescence properties of Eu/Tb activated Y2O3 phosphors synthesized by solid state process. Rare Metal Mater. Eng. 45(11), 2790–2792 (2016)

    Google Scholar 

  8. F. Li, L. Hai, W. Shuilin, S. Wei, Y. Lixin, Photoluminescent properties of Eu3+ and Tb3+ codoped Gd2O3 nanowires and bulk materials. J. Rare Earth 31(No. 11), 1063 (2013)

    CAS  Google Scholar 

  9. L.S. Cavalcante, A.Z. Simoes, J.C. Sczancoski, V.M. Longo, R. Erlo, M.T. Escote, E. Longo, J.A. Varela, SrZrO3 powders obtained by chemical method: synthesis, characterization and optical absorption behavior. Solid State Sci. 9, 1020–1027 (2007)

    CAS  Google Scholar 

  10. H.S. Potdar, S.B. Deshpande, A.J. Patil, A.S. Deshpande, Y.B. Khollam, S.K. Date, Preparation and characterization of strontium zirconate (SrZrO3) fine powders. Mater. Chem. Phys. 65, 178–185 (2000)

    CAS  Google Scholar 

  11. C. Tang, Q. Wu, Y. Cui, Structural, dielectric and magnetic properties of Fe-doped SrZrO3 ceramics. Ceramics-Silikáty 60(2), 68–71 (2016)

    CAS  Google Scholar 

  12. A. Zhang, M. Lu, G. Zhou, Y. Zhou, Z. Qiu, Q. Ma, Synthesis, characterization and luminescence of Eu3+ doped SrZrO3 nanocrystals. J. Alloys Compd. 468, L17–L20 (2009)

    CAS  Google Scholar 

  13. H. Zhang, X. Fu, S. Niu, Q. Xin, Synthesis and photoluminescence properties of Eu3+ doped AZrO3(A = Ca, Sr, Ba) perovskite. J. Alloys Compd. 459, 103–106 (2008)

    CAS  Google Scholar 

  14. J. Huang, L. Zhou, Z. Wang, Y. Lan, Z. Tong, F. Gong, J. Sun, L. Li, Photoluminescence properties of SrZrO3:Eu3+ and BaZrO3:Eu3+phosphors with perovskite structure. J. Alloys Compd. 487, L5–L7 (2009)

    CAS  Google Scholar 

  15. M. Tarrida, H. Larguem, M. Madon, Structural investigations of (Ca,Sr)ZrO3 and Ca(Sn,Zr)O3 perovskite compounds. Phys. Chem. Minerals 36, 403–413 (2009)

    CAS  Google Scholar 

  16. Z. Wang, J. Zhang, G. Zheng, X. Peng, H. Dai, Violet-blue afterglow luminescence properties of non-doped SrZrO3 material. J. Lumin. 144, 30–33 (2013)

    CAS  Google Scholar 

  17. S.K. Gupta, M. Mohapatra, V. Natarajan, S.V. Godbole, Photoluminescence investigations of the near white light emitting perovskite ceramic SrZrO3:Dy3+ prepared via gel-combustion route. Int. J. Appl. Ceram. Technol. 10(4), 593–602 (2013). doi:10.1111/j.1744-7402.2012.02819.x

    Article  CAS  Google Scholar 

  18. S. Das, S. Som, C.Y. Yang, S. Chavhan, C.H. Lu, Structural evaluations and temperature dependent photoluminescence characterizations of Eu activated SrZrO3 hollow spheres for luminescence thermometry applications. Sci. Rep. (2016). doi:10.1038/srep25787

    Article  Google Scholar 

  19. K.N. Shinde, A. Hakeem, S.J. Dhoble, K. Park, Photoluminescence properties of (Sr1 – xCax)1 – yZrO3:yEu3+ phosphors for near-ultraviolet excited LEDs. Ceram. Int. 40, 551–555 (2014)

    CAS  Google Scholar 

  20. Y.S. Malghe, U.C. Yadav, Synthesis, characterization and investigation of dielectric properties of nanosized SrZrO3. J. Therm. Anal. Calorim. 122, 589–594 (2015)

    CAS  Google Scholar 

  21. E. Fernandez Lopez, V. Sanchez Escribano, M. Panizza, M.M. Carnasciali, G. Busca, Vibrational and electronic spectroscopic properties of zirconia powders. J. Mater. Chem. 11, 1891–1897 (2001)

  22. A. Zhang, M. Lu, S. Wang, G. Zhou, S. Wang, Y. Zhou, Novel photoluminescence of SrZrO3 nanocrystals synthesized through a facile combustion method. J. Alloys Compd. 433, L7–L11 (2007)

    CAS  Google Scholar 

  23. L. Wang, P. Zhang, M.H. Habibi, J.I. Eldridge, S.M Guo, Infrared radiative properties of plasma-sprayed strontium zirconate. Mater. Lett. 137, 5–8 (2014)

    CAS  Google Scholar 

  24. R. Das, K. Gupta, K. Jana, A. Nayak, U.C. Ghosh, Preparation, characterization and dielectric, ac conductivity with electro-chemical behavior of strontium zirconate. Adv. Mater. Lett. 7(8), 646–651 (2016)

    CAS  Google Scholar 

  25. K. Binnemans, Interpretation of europium (III) spectra. Coord. Chem. Rev. 295, 1–45 (2015)

    CAS  Google Scholar 

  26. J. Alarcon, D. van der Voort, G. Blasse, Synthesis, efficient Eu3+ luminescence in non-lanthanide host lattices. Mat. Res. Bull. 27, 467–472 (1992)

    CAS  Google Scholar 

  27. D. Fahmi, On luminescence and energy transfer in oxyapatite co-doped with Eu3+ and Tb3+ ions. J. Mater. Environ. Sci. 7(12), 4411–4418 (2016)

    CAS  Google Scholar 

  28. B. Wang, Q. Ren, O. Hai, X. Wu, Luminescence properties and energy transfer inTb3+ and Eu3+ co-doped Ba2P2O7 phosphors. RSC Adv. 7, 15222 (2017)

    CAS  Google Scholar 

  29. G. Garcıa-Rosales, F. Mercier-Bion, R. Drot, G. Lagarde, J. Roques, E. Simoni, Energy transfer from Tb3+ to Eu3+ ions sorbed on SrTiO3 surface. J. Lumin. 132, 1299–1306 (2012)

    Google Scholar 

  30. Masaaki Yoshiyuki Kojima, Numazawa, Tetsuo Umegaki, Fluorescent properties of a green- to red-emitting Eu3+, Tb3+ codoped amorphous calcium silicate phosphor. J. Lumin. 132, 2648–2652 (2012)

    Google Scholar 

  31. E. Alvarez, M.E. Zayas, J. Alvarado-Rivera, F. Felix-Domínguez, R.P. Duarte-Zamorano, U. Caldino, New reddish-orange and greenish-yellow light emitting phosphors: Eu3+/Eu3+and Tb3+ in sodium germinate glass. J. Lumin. 153, 198–202 (2014)

    CAS  Google Scholar 

  32. Y. Feng, J. Huang, C. Li, G. Hu, J. Liu, X. Yu, Structure, energy transfer and tunable photoluminescence of Sr7Zr(PO4)6:Tb3+, Eu3+ phosphors for near-UV white LEDs. J. Alloys Compd. 706, 478–484 (2017)

    CAS  Google Scholar 

  33. X. Zhu, Z. Zhou, Photoluminescence and energy transfer mechanism of a novel tunable color phosphor Na2MgSiO4:Tb3+, Eu3+. J. Lumin. 188, 589–594 (2017)

    CAS  Google Scholar 

  34. U. Caldiño, A. Speghini, S. Berneschi, M. Bettinelli, M. Brenci, E. Pasquini, S. Pelli, G.C. Righini, Optical spectroscopy and optical waveguide fabrication in Eu3+ and Eu3+/Tb3+ doped zinc–sodium–aluminosilicate glasses. J. Lumin. 147, 336–340 (2014)

    Google Scholar 

  35. R. Wang, D. Zhou, J. Qiu, Y. Yang, C. Wang, Color-tunable luminescence in Eu3+/Tb3+ co-doped oxyfluoride glass and transparent glass–ceramics. J. Alloys Compd. 629, 310–314 (2015)

    CAS  Google Scholar 

  36. Y. Jiang, Y. Liu, G. Liu, X. Dong, J. Wang, W. Yu, Q. Dong, Surfactant-assisted hydrothermal synthesis of octahedral structured NaGd(MoO4)2:Eu3+/Tb3+ and tunable photoluminescent properties. Opt. Mater. 36, 1865–1870 (2014)

    CAS  Google Scholar 

  37. Sheetal, V.B. Taxak, R Arora, Dayawati, S.P. Khatkar, Synthesis, structural and optical properties of SrZrO3:Eu3+ phosphor. J. Rare Earths 32(no. 4), 293 (2014)

    CAS  Google Scholar 

  38. S.K. Gupta, P.S. Ghosh, A.K. Yadav, N. Pathak, A. Arya, S.N. Jha, D. Bhattacharyya, R.M. Kadam, Luminescence Properties of SrZrO3/Tb3+ perovskite: host-dopant energy-transfer dynamics and local structure of Tb3+. Inorg. Chem. 55, 1728–1740 (2016)

    Google Scholar 

  39. P. Dorenbos, The Eu3+ charge transfer energy and the relation with the band gap of compounds. J. Lumin. 111, 89–104 (2005)

    CAS  Google Scholar 

  40. A.H. Wako, B.F. Dejene, H.C. Swart, Role of doping ions in afterglow properties of blue CaAl2O4:Eu2+, Nd3+ phosphors. Phys. B 439, 153–159 (2013)

    Google Scholar 

  41. Q.Y. Zhang, K. Pita, W. Ye, W.X. Que, Influence of annealing atmosphere and temperature on photoluminescence of Tb3+ or Eu3+-activated zinc silicate thin film phosphors via sol–gel method. Chem. Phys. Lett. 351, 163–170 (2002)

    CAS  Google Scholar 

  42. Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Luminescence of Eu and Dy activated R3MgSi2O8 -based (R = Ca, Sr, Ba) phosphors. J. Alloys Compd. 348, 76–79 (2003)

    CAS  Google Scholar 

  43. S.W.S. McKeever, Thermoluminescence of Solids. (University Press UK, Cambridge, 1988)

    Google Scholar 

  44. D.J. Daniel, O. Annalakshmi, U. Madhusoodanan, P. Ramasamy, Thermoluminescence characteristics and dosimetric aspects of fluoroperovskites (NaMgF3:Eu2+, Ce3+). J. Rare Earths 32, 496–500 (2014)

    CAS  Google Scholar 

  45. V. Dubey, J. Kaur, S. Agrawal, Effect of europium doping levels on photoluminescence and thermoluminescence of strontium yttrium oxide phosphor. Mater. Sci. Semicond. Process. 31, 27–37 (2015)

    CAS  Google Scholar 

  46. Y.S. Horowitz, D. Yossian, Computerised glow curve deconvolution: application to thermoluminescence dosimetry. Radiat. Prot. Dosim. 60, 293–295 (1995)

    Google Scholar 

  47. N. Kucuk, A.H. Gozel, M. Yuksel, T. Dogan, M. Topaksu, Thermoluminescence kinetic parameters of different amount La-doped ZnB2O4. Appl. Rad. Isot. 104, 186–191 (2015)

    CAS  Google Scholar 

  48. K.V.D. Eeckhout, A.J.J. Bos, D. Poelman, P.F. Smet, Revealing trap depth distributions in persistent phosphors. Phys. Rev. B 87(11), 045126 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Agrawal.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katyayan, S., Agrawal, S. Investigation of spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications. J Mater Sci: Mater Electron 28, 18442–18454 (2017). https://doi.org/10.1007/s10854-017-7791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7791-8

Navigation