Skip to main content

Advertisement

Log in

Synthesis and characterisation of a high dielectric constant and ac-conducting PANI/[Co(NH3)3(C4H4N2)3]Cl3 nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study we have synthesised polyaniline/[Co(NH3)3(C4H4N2)3]Cl3 nanocomposite by in-situ chemical polymerisation method in non-aqueous dimethyl sulphoxide medium. The filler photoadduct was synthesised by irradiating aqueous solution mixture of hexaminecobalt(III) chloride metal complex and pyrazine, which was subsequently reduced in size by high energy ball milling prior to incorporation into the polyaniline matrix. The optical, structural, thermal and dielectric properties of the as synthesised nanocomposite were studied. The energy band gap as obtained from Tauc plot was observed higher for nanocomposite as compared to polyaniline. FTIR and XRD results show presence of photoadduct nanoparticles in the polyaniline matrix and successful interactions between them. The crystallite size as obtained from XRD confirms the nano dimensions of both photoadduct (26 nm) and nanocomposite (18 nm) with photoadduct retaining its structure in the nanocomposite. Presence of modified agglomerate regions in nanocomposite have been confirmed from FESEM which facilitates better charge separation in the material as observed from dielectric measurements. TG of nanocomposite shows better thermal stability as compared to both polyaniline and photoadduct owing to the strong interactions between the photoadduct nanoparticles and polyaniline matrix. The dielectric measurements (έ, ἒ, tanδ and σac) were studied as a function of frequency and their variation with frequency is explained by “Maxwell–Wagner” model. The nanocomposite shows higher value of dielectric constant (106) and higher value of ac-conductivity (109) as compared to pure PANI. The high value of dielectric constant and ac-conductivity of the nanocomposite makes the material suitable for energy storage applications and an effective electromagnetic interference shielding material both at low and high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Ma, N. Li, C. Yang, X. Yang, Colloids Surf. A 269, 1–6 (2005)

    Article  CAS  Google Scholar 

  2. T. Machappa, M.A. Prasad, Bull. Mater. Sci. 35, 75–81 (2012)

    Article  CAS  Google Scholar 

  3. N. Parvatikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar, M.A. Prasad, Sens. Actuators B 114, 599–603 (2006)

    Article  CAS  Google Scholar 

  4. I. Sedenkova, M. Trchova, Stejskal, J. Polym. Degrad. Stab. 93, 2147–2157 (2008)

    Article  CAS  Google Scholar 

  5. J. Alam, U. Riaz, S.M. Ashraf, S.J. Ahmad, Coat. Technol. Res. 5, 123–128 (2008)

    Article  CAS  Google Scholar 

  6. P.R. Somani, R. Marimuthu, U.P. Mulik, S.R. Sainkar, D.P. Amalnerkar, Synth. Met. 106, 45–52 (1999)

    Article  CAS  Google Scholar 

  7. Z. Niu, Z. Yang, Z. Hu, Y. Lu, C.C. Han, Adv. Funct. Mater. 13, 949–954 (2003)

    Article  CAS  Google Scholar 

  8. M.S. Rather, K. Majid, R.K. Wanchoo, M.L. Singla, J. Therm. Anal. Calorim. 117, 611–619 (2014)

    Article  CAS  Google Scholar 

  9. M.S. Rather, K. Majid, R.K. Wanchoo, M.L. Singla, Synth. Met. 179, 60–66 (2013)

    Article  CAS  Google Scholar 

  10. M.H. Najar, K. Majid, J. Mater. Sci. 24, 4332–4339 (2013)

    CAS  Google Scholar 

  11. M.H. Najar, K. Majid, RSC Adv. 5, 107209–107221 (2015)

    Article  CAS  Google Scholar 

  12. S.K. Moosvi, K. Majid, T. Ara, J. App. Polym. Sci. 133, 43487 (2016). doi:10.1002/app.43487

  13. M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, D.Y. Kim, Synth. Met. 153, 77–80 (2005)

    Article  CAS  Google Scholar 

  14. P. Boomi, H.G. Prabu, Colloids Surf. A 429, 51–59 (2013)

    Article  CAS  Google Scholar 

  15. T.R. Hull, B.K. Kandola, Fire Retardancy of Polymers: New Strategies and Mechanisms (Royal Society of Chemistry, Cambridge, 2009)

    Google Scholar 

  16. D. Bloor, B. Movagher, IEEE Proc. 130, 225 (1983)

    CAS  Google Scholar 

  17. V. Eskizeybek, F. Sarı, H. Gülce, A. Gülce, A. Avcı, Appl. Catal. B 119, 197–206 (2012)

    Article  Google Scholar 

  18. G.J. Kruger, E.C. Reynhardt, Acta Cryst. B 34, 915–917 (1978)

    Article  Google Scholar 

  19. A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies (W. H. Freeman, San Francisco, 1963)

    Google Scholar 

  20. S.E. Jacobo, J.C. Aphesteguy, R.L. Anton, N.N. Schegoleva, G.V. Kurlyandskaya, Eur. Polym. J. 43, 1333–1346 (2007)

    Article  CAS  Google Scholar 

  21. Y.I. Kim, D. Kim, C.S. Lee, Phys. B. 337, 42–51 (2003)

    Article  CAS  Google Scholar 

  22. B.P. Prasanna, D.N. Avadhani, H.B. Muralidhara, M. Revanasiddappa, IJLTEMAS 3, 55–60 (2014)

    Google Scholar 

  23. F.A. Rafiqi, K. Majid, RSC Adv. 6, 22016–22025 (2016)

    Article  CAS  Google Scholar 

  24. A.H. Elsayed, M.M. Eldin, A.M. Elsyed, A.A. Elazm, E.M. Younes, H.A. Motaweh, Int. J. Electrochem. Sci. 6, 206–221 (2011)

    CAS  Google Scholar 

  25. Y.N. Qi, F. Xu, H.J. Ma, L.X. Sun, J. Zhang, T. Jiang, Therm. Anal. Calorim. 91, 219–223 (2008)

    Article  CAS  Google Scholar 

  26. A.A. Farghali, M. Moussa, M.H. Khedr, J. Alloys Compd. 499, 98–103 (2010)

    Article  CAS  Google Scholar 

  27. J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, N. Haldolaarachchige, Z. Guo, J. Mater. Chem. 21, 3952–3959 (2011)

    Article  CAS  Google Scholar 

  28. J.C. Maxwell, Electric and Magnetism (Oxford University Press, New York, 1973)

    Google Scholar 

  29. D.O. Neill, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 77, 1520–1522 (2000)

    Article  Google Scholar 

  30. M.A. Dar, K.M. Batoo, V.J. Verma, J. Alloys Compd. 493, 553–560 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kowsar Majid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqash, W., Majid, K. Synthesis and characterisation of a high dielectric constant and ac-conducting PANI/[Co(NH3)3(C4H4N2)3]Cl3 nanocomposite. J Mater Sci: Mater Electron 28, 18322–18330 (2017). https://doi.org/10.1007/s10854-017-7778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7778-5

Navigation