Skip to main content

Novel synthesis method for photo-catalytic system based on some 3d-metal titanates

An Author correction to this article was published on 07 October 2017

This article has been updated


In this paper, we studied titanium (TiO2) nanoparticle in three different structures (Anatase, Rutile, and Degussa) and then they were synthesized by the sol–gel method which is used butanol, toluene, and triethylene glycol as solvent at different temperatures and times. Then in this case to modify the TiO2, doping was done by transition metals and CdTiO3, CrTiO3, NiTiO3, MnTiO3, FeTiO3, and CoTiO3 were synthesized. The pure MTiO3 (M = Cd, Cr, Ni, Mn, Fe and Co) nanoparticles were formed when the precursor was heat-treated at 750 °C for 210 min. Characterizing the new additions was conducted by X-ray diffraction, FT-IR spectroscopy, UV–Vis spectroscopy, Scanning electron microscopy (SEM) image and N2 absorption–desorption. The BET analysis was performed to calculate the specific surface area. Pore diameter, pore volume, and the percentage of mesoporous MTiO3 were obtained by the BJH method according to the reaction. Titanium(IV) butoxide as a precursor was reacted with the metals and the energy band gap based on the metals decreased markedly and differently. To show the existing bond of titanium and metals, FT-IR and SEM image were used to investigate the obtained addition and investigating better their morphology respectively. To evaluate the photocatalytic properties of the nanocrystalline TiO2 (Degussa P-25) and MTiO3, the photocatalytic degradation of salicylic acid as a chemical toxic compound under ultraviolet light irradiation was carried out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Change history

  • 07 October 2017

    The original version of this article unfortunately contained an error in one of the co-author’s name. The third author’s name should read as “Nikolai N. Lobanov” instead of “Nikolay N.Lobanovc”.


  1. 1.

    V. Arabali, M. Ebrahimi, M. Abbasghorbani, V.K. Gupta, M. Farsi, M.R. Ganjali, F. Karimi, Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N-(4-hydroxyphenyl)-3,5-dinitrobenzamide and magnesium oxide nanoparticles. J. Mol. Liq. 213 (2016)

  2. 2.

    H.R. Naderi, P. Norouzi, M.R. Ganjali, Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Appl. Surf. Sci. 366, 552–560 (2016)

    Article  Google Scholar 

  3. 3.

    S.M. Mostafa Hosseinpour, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci. Mater. Electron. 27, 3240–3244 (2016)

    Article  Google Scholar 

  4. 4.

    M. Zahraei, A. Monshi, D. Shahbazi-Gahrouei, M. Amirnasr, B. Behdadfar, M. Rostami, Synthesis and characterization of chitosan coated manganese zinc ferrite nanoparticles as MRI contrast agents. J. Nanostruct. 5, 77–86 (2015)

    Article  Google Scholar 

  5. 5.

    M. Rahimi-Nasarabadi, Electrochemical synthesis and characterization of zinc sulfide nanoparticles. J. Nanostruct. 4, 211–216 (2014)

    Google Scholar 

  6. 6.

    M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, NiAl2O4 nanoparticles: synthesis and characterization through modify sol–gel method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 26, 7745–7750 (2015)

    Article  Google Scholar 

  7. 7.

    S. Khaleghi, Calculation of electronic and optical properties of doped titanium dioxide. Nanostruct. J. Nanostruct. 2, 157–161 (2012)

    Google Scholar 

  8. 8.

    A. Rahdar, M. Aliahmad, Y. Azizi, Synthesis of Cu doped NiO nanoparticles by chemical method. J. Nanostruct. 4, 145–152 (2014)

    Google Scholar 

  9. 9.

    M. Enhessari, M. Kargar-Razi, P. Moarefi, A. Parviz, Synthesis, characterization and photocatalytic properties of MnTiO3-zeolite-Y nanocomposites. J. Nanostruct. 1, 119–125 (2011)

    Google Scholar 

  10. 10.

    M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, TiO2 thin film: preparation, characterization, and its photocatalytic degradation of basic yellow 28 dye. J. Nanostruct. 5, 183–187 (2015)

    Google Scholar 

  11. 11.

    M. Riazian, Dependence of photocatalytic activity of TiO2–SiO2 nanopowders. J. Nanostruct. 4, 433–441 (2014)

    Google Scholar 

  12. 12.

    E. Khosravifarda, M. Salavati-Niasari, M. Dadkhah, G. Sodeifiana, Synthesis and characterization of TiO2-CNTs nanocomposite and investigation of viscosity and thermal conductivity of a new nanofluid. J. Nanostruct. 2, 191–197 (2012)

    Google Scholar 

  13. 13.

    G. Nabiyouni, D. Ghanbari, S. Karimzadeh, B. Samani Ghalehtaki, Sono-chemical synthesis Fe3O4–Mg(OH)2 nanocomposite and its photo-catalyst investigation in methyl orange degradation. J. Nanostruct. 4, 467–474 (2014)

    Google Scholar 

  14. 14.

    M.H. Sadr, A. Morsali, S. Hojaghani, Sonochemical synthesis of a cobalt(II) coordination polymer nano-structure with azo ligand: a new precursor for preparation pure phase of Co3O4 nanostructure. J. Nanostruct. 3, 109–114 (2013)

    Google Scholar 

  15. 15.

    S. Khademolhoseini, M. Zakeri, S. Rahnamaeiyan, M. Nasiri, R. Talebi, A simple sonochemical approach for synthesis of cadmium molybdate nanoparticles and investigation of its photocatalyst application. J. Mater. Sci. Mater. Electron. 26, 7303–7308 (2015)

    Article  Google Scholar 

  16. 16.

    L. Hashemi, A. Tahmasian, A. Morsali, JafarAbedini, Sonochemical synthesis of two new nano-structured lead(II) and mercury(II) coordination polymers. J. Nanostruct. 2, 163–168 (2012)

    Google Scholar 

  17. 17.

    S. Rahnamaeiyan, M. Nasiri, R. Talebi, S. Khademolhoseini, Novel sol–gel method for synthesis of cobalt aluminate and its photocatalyst application. J. Mater. Sci. Mater. Electron. 26, 8720–8725 (2015)

    Article  Google Scholar 

  18. 18.

    D. Huang, Y.J. Wang, L.M. Yang, G.S. Luo, Direct synthesis of mesoporous TiO2 modified with phosphotungstic acid under template-free condition. Microporous Mesoporous Mater 96, 301–306 (2006)

    Article  Google Scholar 

  19. 19.

    D.-W. Lee, S.-J. Park, S.-K. Ihm, K.-H. Lee, Synthesis of bimodal mesoporous titania with high thermal stability via replication of citric acid-templated mesoporous silica. Chem. Mater 19, 937–941 (2007)

    Article  Google Scholar 

  20. 20.

    A.J. Nozik, Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 257, 383–386 (1975)

    Article  Google Scholar 

  21. 21.

    G. Sivalingama, K. Nagavenib, M.S. Hegdeb, G. Madras, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl. Catal. B 45, 23–38 (2003)

    Article  Google Scholar 

  22. 22.

    K. Nagavenia, G. Sivalingamb, M.S. Hegdeb, G. Madras, Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl. Catal. B 48, 83–93 (2004)

    Article  Google Scholar 

  23. 23.

    E. Beyers, P. Cool, E.F. Vansant, Anatase formation during the synthesis of mesoporous titania and its photocatalytic effect. J. Phys. Chem. B 109, 10081–10086 (2005)

    Article  Google Scholar 

  24. 24.

    C.-C. Wang, Z. Zhang, J.Y. Ying, Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct. Mater. 9, 583–586 (1997)

    Article  Google Scholar 

  25. 25.

    Y.K. Sharma, M. Kharkwal, S. Uma, R. Nagarajan, Synthesis and characterization of titanates of the formula MTiO3 (M = Mn, Fe, Co, Ni and Cd) by co-precipitation of mixed metal oxalates, polyhedron. 28, 579–585 (2009)

  26. 26.

    S. Suthirakuna, G. Xiaob, S.C. Ammala, F. Chenb, H.-C.z. Loyec, A. Heyden, Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: a case study for doped SrTiO3. J. Power Sour. 245, 875–885 (2014)

    Article  Google Scholar 

  27. 27.

    A.S. Patra, N.V. Kumar, D. Barpuzarya, M. Deb, M. Qureshia, Strontium doped lanthanum manganites for efficient and robust photocatalytic water oxidation coupled with graphene oxide. Mater. Lett. 131, 125 – 127 (2014)

    Article  Google Scholar 

  28. 28.

    S. Hashemian, A. Foroghimoqhadam, Effect of copper doping on CoTiO3 ilmenite type nanoparticles for removal of congo red from aqueous solution. Chem. Eng. J. 235, 299–306 (2014)

    Article  Google Scholar 

  29. 29.

    T. Vargaa, T.C. Droubay, M.E. Bowden, P. Nachimuthu, V. Shutthanandan, T.B. Bolin, W.A. Shelton, S.A. Chambers, Epitaxial growth of NiTiO3 with a distorted ilmenite structure. Thin Solid Films 520, 5534–5541 (2012)

    Article  Google Scholar 

  30. 30.

    C. Liu, H. Chen, Z. Ren, S. Dardona, M. Piech, H. Gao, P.-X. Gao, Controlled synthesis and structure tunability of photocatalytically active mesoporous metal-based stannate nanostructures. Appl. Surf. Sci. 296, 53–60 (2014)

    Article  Google Scholar 

  31. 31.

    P.D. Arun, K. Prasad, M. Sridharan, Nanostructured perovskite CdTiO3 films for methane sensing. Sens. Actuators B 222, 987–993 (2015)

    Google Scholar 

  32. 32.

    C.J. Diliegros-Godines, F.J. Flores-Ruiz, R. Castanedo-Pérez, G. Torres-Delgado, E. Broitman, Mechanical and tribological properties of the oxide thin films obtained by sol–gel method. JSST 1–14 (2016)

  33. 33.

    M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Simple morphology-controlled fabrication of CdTiO3 nanoparticles with the aid of different capping agents. J. Mater. Sci. Mater. Electron. 27, 13294–13299 (2016)

    Article  Google Scholar 

  34. 34.

    A. Abedini, S. Khademolhoseini, Cobalt titanate nanoparticles: synthesis, characterization, optical and photocatalytic properties. J. Mater. Sci. Mater. Electron. 27, 330–334 (2016)

    Article  Google Scholar 

  35. 35.

    H.Y. Li An, X. Chen, B. Li, Z. Xia, D. Xia, Catalytic performance and mechanism of N–CoTi@CoTiO3 catalysts for oxygen reduction reaction. Nano Energy 20, 134–143 (2016)

    Article  Google Scholar 

  36. 36.

    J. Lu, Y. Jiang, Y. Zhang, J. Huang, Z. Xu, Preparation of gas sensing CoTiO3 nanocrystallites using EDTA as the chelating agent in a sol–gel process. Ceram. Int. 41, 3714–3721 (2015)

    Article  Google Scholar 

  37. 37.

    J. Zou, W. Zheng, TiO2@CoTiO3 complex green pigments with low cobalt content and tunable color properties. Ceram. Int. 42, 8198–8205 (2016)

    Article  Google Scholar 

  38. 38.

    R. Dadigala, B.R. Gangapuram, R. Bandi, A. Dasari, V. Guttena, Synthesis and characterization of C–TiO2/FeTiO3 and CQD/C–TiO2/FeTiO3 photocatalysts with enhanced photocatalytic activities under sunlight irradiation. Acta Metall. Sinica 29, 17–27 (2016)

    Article  Google Scholar 

  39. 39.

    M.E. Zarazúa-Morín, L.M. Torres-Martínez, E. Moctezuma, I. Juárez-Ramírez, B.B. Zermeño, Synthesis, characterization, and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light. Res. Chem. Intermed. 42, 1029–1043 (2016)

    Article  Google Scholar 

  40. 40.

    P. García-Muñoz, G. Pliego, J.A. Zazo, A. Bahamonde, A. Casasa, Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. J Environ Chem Eng 4, 542–548 (2016)

    Article  Google Scholar 

  41. 41.

    A.T. Raghavender, N.H. Hong, K.J. Lee, M.-H. Jung, Z. Skoko, M. Vasilevskiy, M.F. Cerqueira, A.P. Samantilleke, Nano-ilmenite FeTiO3: synthesis and characterization. J. Magn. Magn. Mater. 331, 129–132 (2013)

    Article  Google Scholar 

  42. 42.

    S. Guo, J. Liu, S. Qiu, Y. Wang, X. Yan, N. Wu, S. Wang, Z. Guo, Enhancing electrochemical performances of TiO2 porous microspheres through hybridizing with FeTiO3 and nanocarbon. Electrochim. Acta 190, 556–565 (2016)

    Article  Google Scholar 

  43. 43.

    N. Mufti, G.R. Blake, M. Mostovoy, S. Riyadi, A.A. Nugroho, T.T.M. Palstra, Magnetoelectric coupling in MnTiO3. Phys. Rev. B 83, 104416 (2011)

    Article  Google Scholar 

  44. 44.

    C. Avcı, A. Aydın, Z. Tuna, Z. Yavuz, Y. Yamauchi, N. Suzuki, Ö. Dag, Molten salt assisted self assembly (MASA): synthesis of mesoporous metal titanate (CoTiO3, MnTiO3, and Li4Ti5O12) thin films and monoliths. Chem. Mater. 26, 6050–6057 (2014)

    Article  Google Scholar 

  45. 45.

    W. Dong, D. Wang, L. Jiang, H. Zhu, H. Huang, J. Li, H. Zhao, C. Li, B. Chen, G. Deng, Synthesis of F doping MnTiO3 nanodiscs and their photocatalytic property under visible light. Mater. Lett. 98, 265–268 (2013)

    Article  Google Scholar 

  46. 46.

    M. Shaterian, M. Barati, K. Ozaee, M. Enhessari, Application of MnTiO3 nanoparticles as coating layer of high performance TiO2/MnTiO3 dye-sensitized solar cell. Ind. Eng. Chem. Res. 20, 3646–3648 (2014)

    Article  Google Scholar 

  47. 47.

    N. Pugazhenthirana, K. Kaviyarasana, T. Sivasankar, A. Emeline, D. Bahnemann, R.V. Mangalaraja, S. Anandan, Sonochemical synthesis of porous NiTiO3 nanorods for photocatalytic degradation of ceftiofur sodium. Ultrason. Sonochem. 35, 342–350 (2016)

    Article  Google Scholar 

  48. 48.

    S. Anandan, T. Lana-Villarreal, J.J. Wu, Sonochemical synthesis of mesoporous NiTiO3 ilmenite nanorods for the catalytic degradation of tergitol in water. Ind. Eng. Chem. Res. 54, 2983–2990 (2015)

    Article  Google Scholar 

  49. 49.

    M.-W. Li, J.-P. Yuan, X.-M. Gao, E.-Q. Liang, C.-Y. Wang, Structure and optical absorption properties of NiTiO3 nanocrystallites. Appl. Phys. A 122, 1–7 (2016)

    Google Scholar 

  50. 50.

    T.-T. Pham, C. Nguyen-Huy, E.W. Shin, NiTiO3/reduced graphene oxide materials synthesized by a two-step microwave-assisted method. Mater. Lett. 184, 38–42 (2016)

    Article  Google Scholar 

  51. 51.

    M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Novel route to synthesize nanocrystalline nickel titanate in the presence of amino acids as a capping agent. J. Mater. Sci. Mater. Electron. 27, 11873–11878 (2016)

    Article  Google Scholar 

  52. 52.

    A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, H. Taqriri, S. Bagheri, K. Saberyan, Synthesis, characterization, and photovoltaic application of NiTiO3 nanostructures via two-step sol–gel method. J. Mater. Sci. Mater. Electron. 26, 5735–5742 (2015)

    Article  Google Scholar 

  53. 53.

    Y. Tong, J. Fu, Z. Chen, Synthesis, characterization, and NIR reflectance of highly dispersed NiTiO3 and NiTiO3/TiO2 composite pigments. J. Nanomater. 2016 (2016)

  54. 54.

    J.-L. Wang, Y.-Q. Li, Y.-J. Byon, S.-G. Mei, G.-L. Zhang, Synthesis and characterization of NiTiO3 yellow nano pigment with high solar radiation reflection efficiency. Powder Technol. 235 303–306 (2013)

    Article  Google Scholar 

  55. 55.

    E. Achhal, H. Jabraoui, S. Ouaskit, A. Gibaud, Mesoporous materials from SiO2 and NiTiO3. J. Mol. Cryst. Liq. Cryst. 634, 121–129 (2016)

    Article  Google Scholar 

  56. 56.

    S. Yuvaraj, V.D. Nithya, K.S. Fathima, C. Sanjeeviraja, G.K. Selvan, S. Arumugam, R.K. Selvan, Investigations on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis. Mater. Res. Bull. 48, 1110–1116 (2013)

    Article  Google Scholar 

  57. 57.

    H.-L. Wang, W.-Z. Liang, W.-F. Jiang, Solar photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) using TiO2/SiO2 aerogel composite photocatalysts. Mater. Chem. Phys. 130, 1372–1379 (2011)

    Article  Google Scholar 

  58. 58.

    S.-C. Zhu, S.-H. Xie, Z.-P. Liu, Acta Metallurgica Sinica (English Letters) journal of materials science and technologynature of rutile nuclei in anatase-to-rutile phase transition. J. Am. Chem. Soc. 137, 11532–11539 (2015)

    Article  Google Scholar 

  59. 59.

    Y. Wang, L. Li, X. Huang, Q. Lia, G. Li, New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Adv. 5, 34302–34313 (2015)

    Article  Google Scholar 

  60. 60.

    J. Safaei-Ghomi, S. Zahedi, M. Javid, M.A. Ghasemzadeh, MgO nanoparticles: an efficient, green and reusable catalyst for the One- pot syntheses of 2,6-dicyanoanilines and 1,3-diarylpropyl malononitriles under different conditions. J. Nanostruct. 5, 153–160 (2015)

    Article  Google Scholar 

  61. 61.

    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, A.A. Davoudi-Dehaghani, A Javidan, M.M. Zahedi, S.S. Hajimirsadeghi, Statistical optimization of experimental parameters for synthesis of manganese carbonate and manganese oxide nanoparticles. Mater. Res. Bull. 47, 1045–1050 (2012)

    Article  Google Scholar 

  62. 62.

    S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, I. Kohsari, Optimization of parameters for the synthesis of silver iodate submicron belts by taguchi robust design method. Chem. Eng. Commun 198, 1182–1188 (2011)

    Article  Google Scholar 

  63. 63.

    S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, Applying the taguchi robust design to optimization of the experimental conditions for synthesis of lead chromate nanorods. J. Dispersion Sci. Technol. 33, 254–257 (2011)

    Article  Google Scholar 

  64. 64.

    S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, Synthesis, characterization, and morphological control of CaCu3Ti4O12 through modify sol–gel method. J. Mater. Sci. Mater. Electron. 26, 6086–6091 (2015)

    Article  Google Scholar 

  65. 65.

    A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, Ce(MoO4)2 nanostructures: synthesis, characterization, and its photocatalyst application through the ultrasonic method. J. Mol. Liq. 216, 1–5 (2016)

    Article  Google Scholar 

  66. 66.

    S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, H.R. Ghaeni, S.S. Hajimirsadeghi, Facile chemical synthesis and characterization of copper tungstate nanoparticles. J. Inorg. Organomet. Polym. Mater. 24, 333–339 (2014)

    Article  Google Scholar 

  67. 67.

    M. Rahimi-Nasrabadi, S.M. Pourmortazav, M.R. Ganjali, S.S. Hajimirsadeghi, M.M. Zahedi, J.M. Struct, Electrosynthesis and characterization of zinc tungstate nanoparticles. J. Mol. Struct. 1047, 31–36 (2013)

    Article  Google Scholar 

  68. 68.

    L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, Y. Zhang, Q. Zhu, S. Yang, W. Zhou, Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci Rep 7 (2017)

  69. 69.

    T. Wang, G. Yang, J. Liu, B. Yang, S. Ding, Z. Yan, T. Xiao, Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres. Appl. Surf. Sci. 311, 314–323 (2014)

    Article  Google Scholar 

  70. 70.

    F. Ansari, F. Soofivand, M. Salavati-Niasari, Utilizing maleic acid as a novel fuel for synthesis of PbFe12O19 nanoceramics via sol–gel auto-combustion route. Mater. Charact. 103, 11–17 (2015)

    Article  Google Scholar 

  71. 71.

    S. Mandizadeh, M. Bazarganipour, M. Salavati-Niasari, A low-cost and eco-friendly viable approach for green synthesis of barium haxaferrite nanostructures using palm oil. Ceram. Int. 40, 15685–15691 (2014)

    Article  Google Scholar 

  72. 72.

    M. Salavati-Niasari, B. Shoshtari-Yeganeh, M. Bazarganipour, Facile synthesis of rod-shape nanostructures lead selenide via hydrothermal process. Superlattices Microstruct. 58, 20–30 (2013)

    Article  Google Scholar 

  73. 73.

    A. Mohammadi, M. Ghorbani, A facile particulate sol–gel route to synthesize nanostructured CoTiO3 thin films and powders and their characteristics. J. Mater. Sci. 26, 5243–5253 (2015)

    Google Scholar 

  74. 74.

    M.-W. Li, X.-M. Gao, Y.-L. Hou, C.-Y. Wang, Characterization of CoTiO3 nanocrystallites prepared by homogeneous precipitation method, J. Nano- Electron. Phys. 5, 3022 (2013)

    Google Scholar 

  75. 75.

    S. Mobini, F. Meshkani, M. Rezaei, Synthesis and characterization of nanocrystalline copper-chromium catalyst and its application in the oxidation of carbon monoxide. Process Saf. Environ. Prot. 107 181–189 (2017)

    Article  Google Scholar 

  76. 76.

    F.D. Renzo, Catal. Today 41, 37–40 (1998)

    Article  Google Scholar 

  77. 77.

    Z.A.D. Lethbridge, J.J. Williams, R.I. Walton, K.E. Evans, C.W. Smith, Microporous Mesoporous Mater. 79, 339–352 (2005)

    Article  Google Scholar 

  78. 78.

    T.O. Drews, M. Tsapatsis, Curr. Opin. Colloid Interface Sci. 10, 233–238 (2005)

    Article  Google Scholar 

  79. 79.

    S. Qiu, J. Yu, G. Zhu, O. Terasaki, Y. Nozue, W. Pang, R. Xu, Microporous Mesoporous Mater. 21, 245–251 (1998)

    Article  Google Scholar 

  80. 80.

    A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  81. 81.

    F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie, Y. Deng, Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl. Catal. B 200, 330–342 (2017)

    Article  Google Scholar 

  82. 82.

    Y. Qu, W. Zhou, L. Jiang, H. Fu, Novel heterogeneous CdS nanoparticles/NiTiO3 nanorods with enhanced visible-light-driven photocatalytic activity. RSC Adv. 3, 18305–18310 (2013)

    Article  Google Scholar 

Download references


This work was supported by the Ministry of Education and Science of Russian Federation on the program to improve the competitiveness of People’s Friendship University of Russia (RUDN University) among the world’s leading research and education centers in 2016–2020. [Grant Number 02.a03.0008].

Author information



Corresponding author

Correspondence to Yahya Absalan.

Additional information

The original version of this article was revised: The third author name was incorrect. This has been corrected in this version.

A correction to this article is available online at

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Absalan, Y., Bratchikova, I.G., Lobanov, N.N. et al. Novel synthesis method for photo-catalytic system based on some 3d-metal titanates. J Mater Sci: Mater Electron 28, 18207–18219 (2017).

Download citation