Skip to main content

Advertisement

Log in

Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba0.6Sr0.4TiO3 nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm−3 at the low field of 3500 kV m−1, which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm−3 at the field of 6400 kV m−1). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334 (2006)

    Article  Google Scholar 

  2. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L.Q. Chen, T. Jackson, Q. Wang, Nature 523, 576 (2015)

    Article  Google Scholar 

  3. P. Khanchaitit, K. Han, M.R. Gadinski, Q. Li, Q. Wang, Nat. Commun. 4, 2845 (2013)

    Article  Google Scholar 

  4. L.J. Romasanta, M.A. Lopez-Manchado, R. Verdejo, Prog. Mater. Sci. 51, 188 (2015)

    Article  Google Scholar 

  5. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57, 660 (2012)

    Article  Google Scholar 

  6. X. Hao, J. Zhai, L.B. Kong, Z. Xu, Prog. Mater. Sci. 63, 1 (2014)

    Article  Google Scholar 

  7. Z.M. Dang, M.S. Zheng, J. W. Zha, Small 12, 1688 (2016)

    Article  Google Scholar 

  8. Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai, H. Wang, Adv. Mater. 27, 6658 (2015)

    Article  Google Scholar 

  9. X. Huang, P. Jiang, Adv. Mater. 27, 546 (2015)

    Article  Google Scholar 

  10. X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu, J. Du, Y. Lin, C.W. Nan, Adv. Mater. 27, 819 (2015)

    Article  Google Scholar 

  11. L. Yao, Z. Pan, S. Liu, J. Zhai, H.H. Chen, ACS Appl. Mater. Interfaces 8, 26343 (2016)

    Article  Google Scholar 

  12. K. Prabakaran, S. Mohanty, S.K. Nayak, J. Mater. Sci. 25, 4590 (2014)

    Google Scholar 

  13. S. Luo, Y. Shen, S. Yu, Y. Wan, W.-H. Liao, R. Sun, C.P. Wong, Energy Environ. Sci. 10, 137 (2017)

    Article  Google Scholar 

  14. Z. Chen, L. Xie, X. Huang, S. Li, P. Jiang, Carbon 95, 895 (2015)

    Article  Google Scholar 

  15. Z. Pan, L. Yao, J. Zhai, K. Yang, B. Shen, H. Wang, ACS Sustain. Chem. Eng. 5, 4707 (2017)

  16. J. Chen, X. Yu, F. Yang, Y. Fan, Y. Jiang, Y. Zhou, Z. Duan, J. Mater. Sci. 28, 8043 (2017)

  17. Z.B. Pan, L.M. Yao, J.W. Zhai, S.H. Liu, K. Yang, H.T. Wang, J.H. Liu, Ceram. Int. 42, 14667 (2016)

  18. K. Zhang, F. Gao, J. Xu, L. Wang, Q. Zhang, J. Kong, J. Mater. Sci. 28, 8960 (2017)

  19. Z. Pan, L. Yao, J. Zhai, H. Wang, B. Shen, ACS Appl. Mater. Interfaces 9, 14337 (2017)

  20. M. Mohammadi, P. Alizadeh, F.J. Clemens, Ceram. Int. 41, 13417 (2015)

  21. H. Tang, Z. Zhou, C.C. Bowland, H.A. Sodano, Nano Energy 17, 302 (2015)

  22. W. Yang, S. Yu, R. Sun, R. Du, Acta Mater. 59, 5593 (2011)

  23. C. Zhang, Q. Chi, L. Liu, Y. Chen, J. Dong, T. Ma, X. Wang, Q. Lei, J. Mater. Sci. 28, 514 (2017)

  24. E. Barshaw, J. White, M. Chait, J. Cornette, J. Bustamante, F. Folli, D. Biltchick, G. Borelli, G. Picci, M. Rabuffi, IEEE Trans. Magn. 43, 223 (2007)

  25. Y. Zhao, W. Yang, Y. Zhou, Y. Chen, X. Cao, Y. Yang, J. Xu, Y. Jiang, J. Mater. Sci. 27, 7280 (2016)

  26. S. Liu, J. Zhai, J. Wang, S. Xue, W. Zhang, ACS Appl. Mater. Interfaces 6, 1533 (2014)

  27. N. Guo, S.A. DiBenedetto, P. Tewari, M.T. Lanagan, M.A. Ratner, T.J. Marks, Chem. Mater. 22, 1567 (2010)

  28. S. Ke, Y. Yang, L. Ren, Y. Wang, Y. Li, H. Huang, Compos. Sci. Technol. 72, 370 (2012)

  29. Q. Zhang, F. Gao, C. Zhang, L. Wang, M. Wang, M. Qin, G. Hu, J. Kong, Compos. Sci. Technol. 129, 93 (2016)

  30. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, T. Tanaka, Adv. Funct. Mater. 23, 1824 (2013)

  31. Y. Zhang, L. Li, B. Wang, J. Zhang, E. Wang, J. Mater. Sci. 25, 805 (2013)

  32. P.K. Mahato, S. Sen, J. Mater. Sci. 26, 2969 (2015)

  33. Y. Zhang, S. Jiang, M. Fan, Y. Zeng, Y. Yu, J. He, J. Mater. Sci. 24, 927 (2012)

  34. Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Compos.Sci. Technol. 147, 30 (2017)

  35. Z. Pan, L. Yao, J. Zhai, B. Shen, S. Liu, H. Wang, J. Liu, J. Mater. Chem. A 4, 13259 (2016)

  36. K. Yang, X. Huang, L. Xie, C. Wu, P. Jiang, T. Tanaka, Macromol. Rapid Commun. 33, 1921 (2012)

  37. G. Wang, X. Huang, P. Jiang, ACS Appl. Mater. Interfaces 9, 7547 (2017)

  38. Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen, H. Wang, ACS Appl. Mater. Interfaces 9, 4024 (2017)

  39. M.S.C.E. Brzozowski, Ceram. Int. 26, 265 (2000)

  40. G.S. Higashi, C.G. Fleming, Appl. Phys. Lett. 55, 1963 (1989)

  41. H. Tang, Z. Zhou, H.A. Sodano, Appl. Phys. Lett. 104, 142905 (2014)

  42. Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, C.W. Nan, J. Mater. Chem. 22, 8063 (2012)

  43. M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, A. Serghei, J. Chem. Phys. 142, 194703 (2015)

  44. M. Rahimabady, M.S. Mirshekarloo, K. Yao, L. Lu, Phys. Chem. Chem. Phys. 15, 16242 (2013)

  45. Z.B. Pan, J.W. Zhai, B. Shen, J. Mater. Chem. A 5, 15217 (2017)

  46. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013)

Download references

Acknowledgements

This work was supported by Smart Home Electronic Engineering Technology Center of Guangdong Province and Natural Science Foundation of Guangdong Province (Grant Numbers: 2015A030313639 and 2015A030310296).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwen Chen or Xinmei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yu, X., Fan, Y. et al. Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution. J Mater Sci: Mater Electron 28, 18200–18206 (2017). https://doi.org/10.1007/s10854-017-7766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7766-9

Navigation