Skip to main content

Liquid-processed transition metal dichalcogenide films for field-effect transistors


Transition metal dichalcogenides (TMD) offer a great potential for optoelectronic devices. Yet large scale industrial application of unique TMD properties calls for facile processing techniques compatible with solution dispersible materials and printing technologies. In this work, we used wet processing technique to fabricate thin WS2 films and field-effect devices. The films were formed at the interface of two immiscible liquids using WS2 ethanol suspension and then were transferred onto SiO2/Si substrates. The wet processed WS2 films were found to have a high residual carbon content, which was reduced by sulfur vapor annealing as assessed by XPS. Field effect transistors (FETs) fabricated using bottom-electrode configuration exhibit Ion/Ioff ratios of 20 after annealing in the atmosphere of sulfur vapor. We conclude that TMD liquid processing can produce operational devices, but the fabrication of high-performance FETs needs to avoid organic solvents resulting in carbon contamination adversely affecting the device performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, P. Barbara, Sci. Rep. 3, 1634 (2013)

    Article  Google Scholar 

  2. 2.

    V. Podzorov, M.E. Gershenson, C. Kloc, R. Zeis, E. Bucher, Appl. Phys. Lett. 84, 3301 (2004)

    Article  Google Scholar 

  3. 3.

    L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947 (2012)

    Article  Google Scholar 

  4. 4.

    M. Bernardi, M. Palummo, J. Grossman, Nano Lett. 13, 3664–3664 (2013)

    Article  Google Scholar 

  5. 5.

    W. Ki, X. Huang, J. Lia, D. Young, Y. Zhang, J. Mater. Res. 22(5), 390 (2007)

    Article  Google Scholar 

  6. 6.

    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 3, 147 (2011)

    Article  Google Scholar 

  7. 7.

    W.M. Ranjith Divigalpitiya, S. Roy Morrison, R.F. Frindt, Thin Solid Films 186, 177 (1990)

    Article  Google Scholar 

  8. 8.

    A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez, N. Perea-Lopez, A.L. Elias, C.-I. Chia, B. Wang, V.H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, M. Terrones, Sci. Rep. 3, 1755 (2013)

    Article  Google Scholar 

  9. 9.

    Thermo Scientific XPS [Online]. (XPS Reference, 2015), Accessed 4 May 2015

  10. 10.

    V.V. Atuchin, E.N. Galashov, O.Y. Khyzhun, V.L. Bekenev, L.D. Pokrovsky, Y.A. Borovlev, V.N. Zhdankov, J. Solid State Chem. 236, 2479 (2016)

    Google Scholar 

  11. 11.

    E. Lassner, W.-D. Schubert, E. Luederitz, H.U. Wolf, Ulmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2012)

    Google Scholar 

  12. 12.

    P.K. Chu, L. Li, Mater. Chem. Phys. 96, 253 (2005)

    Article  Google Scholar 

  13. 13.

    A.C. Ferrari, J. Robertson, Philos. Trans. R. Soc. A 362, 2477 (2004)

    Article  Google Scholar 

  14. 14.

    Z. Lin, B. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M. Pimenta, M. Terrones, 2D Mater. 3, 022002 (2016)

    Article  Google Scholar 

Download references


The authors would like to thank Nokia Technologies for the donation which made this research work possible. This work was done using equipment purchased under the Lomonosov Moscow State University Program of Development.

Author information



Corresponding author

Correspondence to D. Yu. Paraschuk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Omelianovych, A.Y., Dominskiy, D.I., Feldman, E.V. et al. Liquid-processed transition metal dichalcogenide films for field-effect transistors. J Mater Sci: Mater Electron 28, 18106–18112 (2017).

Download citation