Skip to main content
Log in

Room temperature ferromagnetic behavior of Mn doped NiO nanoparticles: a suitable electrode material for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetism in Ni1 −xMnxO (x = 0.0, 0.1, 0.2, 0.3) nanoparticles synthesized by Sol–gel technique has been reported. X-ray diffraction (XRD), FESEM with EDAX, Fourier transform infrared spectroscopy (FTIR) and Vibrating Sample Magnetometer (VSM) were employed to understand the influence of Mn in the structural, functional and magnetic properties of NiO nanoparticles. XRD analysis confirmed the formation of single phase cubic structure. The average particle size was measured to be 29 and 23 nm for NiO and Mn doped NiO nanoparticles respectively. FESEM results revealed that particles were spherical in shape. The elemental composition was analyzed by EDAX and it was in good agreement with the starting stoichiometries. FTIR spectra confirmed the existence of NiO. Room temperature ferromagnetism was observed for pure and Mn doped NiO nanoparticles. Pure NiO particles show ferromagnetic behavior with high coercivity and it reduces gradually when doping ratio increases. Higher saturation magnetization was obtained for the sample 0.1% of Mn doped NiO nanoparticles. Electrochemical properties of Mn doped NiO was investigated regarding its performance as electrodes in supercapacitors. Pure NiO shows the maximum specific capacitance of 134.46 Fg−1 at a scan rate of 20 m Vs−1. It reveals that it is a good electrode material for super capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  2. K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan, G. Viruthagiri, Mater. Sci. Semicond. Proces. 27, 846–853 (2014)

    Article  Google Scholar 

  3. P. Mallick, C. Rath, Solid State Commun. 150, 1342–1345 (2010)

    Article  Google Scholar 

  4. S. Thota, J.H. Shim, M. Seehra, J. Appl. Phys. 114, 214307 (2013). doi:10.1063/1.4838915

    Article  Google Scholar 

  5. Z. Li, L. Wei, Y. Liu, Y. Su, X. Dong, Y. Zhang, J. Mater. Sci. (2017). doi:10.1007/s10854-017-7232-8

    Google Scholar 

  6. F.I. Dar, K.R. Moonooswamy, M. Es-Souni, Nanoscale Res. Lett. 8(1), 363 (2013). doi:10.1186/1556-276X-8-363

    Article  Google Scholar 

  7. I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sens. Actuators B 57, 147–152 (1999)

    Article  Google Scholar 

  8. H. Sachdeva, D. Dwivedi, R.R. Bhattacharjee, S. Khaturia, R. Saroj, J. Chem. (2013). doi:10.1155/2013/606259

    Google Scholar 

  9. M. Martini, G.E.S. Brito, M.C.A. Fantini, A. Gorenstein, J. Elect. Acta 46(13–14), 2275–2279 (2001)

    Article  Google Scholar 

  10. Y.J. Mai, J.P. Tu, X.H. Xia, C.D. Gu, X.L. Wang, J. Powrsour. 196, 6388–6393 (2011)

    Google Scholar 

  11. H. Zhu, D.C. Rosenfeld, M. Harb, D.H. Anjum, M.N. Hedhili, S. Ould-Chikh, J.-M. Basset, ACS Catal. 6(5), 2852–2866 (2016). doi:10.1021/acscatal.6b00044

    Article  Google Scholar 

  12. D. Han, X. Jing, J. Wang, P. Yang, D. Song, J. Liu, J. Electroanal. Chem. 682, 37–44 (2012)

    Article  Google Scholar 

  13. H.T. Rahal, R. Awad, A.M. Abdel-Gaber, D.E.-S. Bakeer, J. Nanomater. (2017). doi:10.1155/2017/7460323

    Google Scholar 

  14. M. George, A. Mary John, S.S. Nair, P.A. Joy, M.R. Anantharaman, J. Magn. Magn. Mater. 302, 190–195 (2006)

    Article  Google Scholar 

  15. Y.-D. Luo, Y.-H. Lin, X. Zhang, D. Liu, Y. Shen, C.-W. Nan, J. Nanometer. (2013). doi:10.1155/2013/252593

    Google Scholar 

  16. M. Tadic, D. Nikolic, M. Panjan, G.R. Blake, J. Allcom. 647, 1061–1068 (2015)

    Google Scholar 

  17. L. Li, L. Chen, R. Qihe, G. Li, Appl. Phys. Lett. 89, 134102–134105 (2006)

    Article  Google Scholar 

  18. K. Anandan, V. Rajendran, Mater. Sci. Eng. (2015). doi:10.1016/j.mseb.2015.04.015

    Google Scholar 

  19. H. Xiao, S. Yao, H. Liu, F. Qu, X. Zhang, X. Wu, Progress Nat. Sci. 26, 271–275 (2016)

    Article  Google Scholar 

  20. H. Pang, B. Zhang, J. Du, J. Chen, J. Zhang, S. Li, RSC Adv. 2, 2257–2261 (2012)

    Article  Google Scholar 

  21. H. Jiang, T. Zhao, C. Li, J. Ma, J. Mater. Chem. 21, 3818–3823 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. P. Prabhu, Assistant Professor, Department of Physical Chemistry, University of Madras, Chennai, India for CV studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Raji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathy, G., Raji, P. Room temperature ferromagnetic behavior of Mn doped NiO nanoparticles: a suitable electrode material for supercapacitors. J Mater Sci: Mater Electron 28, 17889–17895 (2017). https://doi.org/10.1007/s10854-017-7730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7730-8

Navigation