Skip to main content
Log in

Dielectric and thermal properties of epoxy resins with TiO2 nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Epoxy based composites with reinforced dielectric properties were successfully synthesized by using TiO2 nanowires as inorganic filler. TiO2 nanoparticle/epoxy composites were also prepared as a contrast. TiO2 nanowires were synthesized by a hydrothermal method, with an average diameter of 50 nm and a length of 5 µm. TiO2 nanoparticles were purchased with average diameter of ~60 nm. Scanning electron microscopy images show that two types of fillers are both homogeneously dispersed in the matrix. Although the specific surface area of TiO2 nanoparticles is about twice of that of TiO2 nanowires, remarkable improved dielectric constant, enhanced electrical and thermal conductivity, higher space charge accumulation and stronger charge carrier mobility were observed in nanowire filled epoxy resin at the same filler content. Meanwhile, nanowires composites exhibit excellent glass transition temperature and thermal stability. These results indicated that the geometry of filler had a profound impact on the performance of epoxy composites, and nanowire filling is more effective than nanoparticle filling to enhance the properties of epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H. Zur Loye, Materials 2, 1697 (2009)

    Article  Google Scholar 

  2. H. Lv, Z. Yang, Y. Cheng, L. Wang, B. Zhang, Y. Zhao, Z. Xu, G. Ji, J. Mater. Chem. C 5, 491 (2017)

    Article  Google Scholar 

  3. J. Gu, Y. Guo, X. Yang, C. Liang, W. Geng, L. Tang, N. Li, Q. Zhang, Compos. Part A 95, 267 (2017)

    Article  Google Scholar 

  4. H. Wu, G. Wu, L. Wang, Powder Technol. 269, 443 (2015)

    Article  Google Scholar 

  5. H. Lv, J. Zhao, H. Zhang, G. Ji. Y. Du, Nano Res. 6, 1813 (2016)

    Article  Google Scholar 

  6. G. Wu, Y. Cheng, F. Xiang, Mater. Sci. Semicond. Process. 41, 6 (2016)

    Article  Google Scholar 

  7. J.W. Zha, T.X. Zhu, Y.H. Wu, J. Mater. Chem. C 3, 7195 (2015)

    Article  Google Scholar 

  8. H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao, Z. Xu, ACS Appl. Mater. Interfaces 9, 5660 (2017)

    Article  Google Scholar 

  9. J. Gu, W. Dong, Y. Tang, Y. Guo, L. Tang, J. Kong, J. Mater. Chem. C 5, 6929 (2017)

    Article  Google Scholar 

  10. H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Chem.-Eur. J. 22, 8864 (2016)

    Article  Google Scholar 

  11. H. Lv, H. Zhang, G. Ji, Z. Xu, ACS Appl. Mater. Interfaces 8, 6529 (2016)

    Article  Google Scholar 

  12. G.L. Wu, Y.H. Cheng, Y.Y. Ren, J. Alloys Compd. 652, 346 (2015)

    Article  Google Scholar 

  13. G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu,  Mater. Lett. 144, 157 (2015)

    Article  Google Scholar 

  14. M. Fréchette, IEEE Electr. Insul. Mag. 29, 8 (2013)

    Article  Google Scholar 

  15. G. Wu, H. Wu, K. Wang, Y.Q. Wang, RSC Adv. 6(63), 58069 (2016)

    Article  Google Scholar 

  16. H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou, X.L. Li, L.T. Zhang, ACS Appl. Mater. Interfaces 9, 6332 (2017)

    Article  Google Scholar 

  17. W. Zhou, J. Zuo, X. Zhang, J. Compos. Mater. 48, 2517 (2014)

    Article  Google Scholar 

  18. X. Huang, C. Zhi, P. Jiang, Adv. Funct. Mater 23, 1824 (2013)

    Article  Google Scholar 

  19. E.A. Cherney, IEEE Electr. Insul. Mag. 29, 59 (2013)

    Article  Google Scholar 

  20. G. Wu, Y. Cheng, Z. Wang, J. Mater. Sci. Mater. El. 28(1), 576 (2017)

    Article  Google Scholar 

  21. Y. Feng, W.L. Li, Y.F. Hou, Y. Yu, W.P. Cao, T.D. Zhang, W.D. Fei, J. Mater. Chem. C 3, 1250 (2015)

    Article  Google Scholar 

  22. H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, X. Li, J. Alloys Compd. 685, 8 (2016)

    Article  Google Scholar 

  23. Y. Yu, C.M. Ma, C. Teng, Y. Huang, H. Tien, S. Lee, I. Wang, J. Taiwan Inst. Chem. E 44, 654 (2013)

    Article  Google Scholar 

  24. C. Grimaldi, M. Mionic, R. Gaal, L. Forro, A. Magrez, Appl. Phys. Lett. 102 (2013)

  25. K. Rasool, M.A. Rafiq, C.B. Li, E. Krali, Z. Durrani, M.M. Hasan, Appl. Phys. Lett. 101, 23114 (2012)

    Article  Google Scholar 

  26. W.Y. Zhou, L.N. Dong, J. Polym. Res. 23, 45 (2016)

    Article  Google Scholar 

  27. C. Pan, K. Kou, Q. Jia, Y. Zhang, G. Wu, T. Ji, Compos. Part B 111, 83 (2017)

    Article  Google Scholar 

  28. R.M. Mutiso, K.I. Winey, Prog. Polym. Sci. 40, 63 (2015)

    Article  Google Scholar 

  29. E.T. Thostenson, Z. Ren, T. Chou, Compos. Sci. Technol. 61, 1899 (2001)

    Article  Google Scholar 

  30. M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)

    Article  Google Scholar 

  31. W. Bauhofer, J.Z. Kovacs, Compos. Sci. Technol. 69, 1486 (2009)

    Article  Google Scholar 

  32. J. Gu, W. Dong, S. Xu, Y. Tang, L. Ye, J. Kong, Compos. Sci. Technol. 144, 185 (2017)

    Article  Google Scholar 

  33. Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang, J. Li, L. Hu, Synthetic Met. 228, 18 (2017)

    Article  Google Scholar 

  34. L. Liu, L.B. Kong, S. Matitsine, Appl. Phys. Lett. 93, 113106 (2008)

    Article  Google Scholar 

  35. Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Adv. Mater. 19, 852 (2007)

    Article  Google Scholar 

  36. S. Singha, M.J. Thomas, IEEE Trans. Dielect. Electr. Insul. 15, 12 (2008)

    Article  Google Scholar 

  37. J. Katayama, Y. Ohki, N. Fuse, M. Kozako, T. Tanaka, IEEE Trans. Dielect. Electr. Insul. 20, 157 (2013)

    Article  Google Scholar 

  38. G. Wu, J. Li, K. Wang, A. Feng, J. Mater. Sci. Mater. El. 28(9), 6544 (2017)

    Article  Google Scholar 

  39. Y. Cheng, Z. Wang, K. Wu, IEEE Trans. Plasma Sci. 40, 68 (2012)

    Article  Google Scholar 

  40. G. Wu, Y. Cheng, K. Wang, J. Mater. Sci. Mater. El. 27(6), 5592 (2016)

    Article  Google Scholar 

  41. N. Guo, S.A. DiBenedetto, P. Tewari, M.T. Lanagan, M.A. Ratner, T.J. Marks, Chem. Mater. 22, 1567 (2010)

    Article  Google Scholar 

  42. G. Wu, Y. Wang, K. Wang, A. Feng, RSC Adv. 6(104), 102542 (2016)

    Article  Google Scholar 

  43. Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Nano Lett. 2, 717 (2002)

    Article  Google Scholar 

  44. F. Tian, Y. Ohki, J. Phys. D 47, 45311 (2013)

    Article  Google Scholar 

  45. V.D.A.G. Bruggeman, Ann. Phys.-Berlin 416, 665 (1935)

    Article  Google Scholar 

  46. V. Gun’Ko, V. Zarko, E. Goncharuk, L. riyko, V. Turov, Y. Nychiporuk, R. Leboda, A. Gabchak, V.D. Osovskii, et al Adv. Colloid Interface 131, 1 (2007)

    Article  Google Scholar 

  47. F. Tian, Y. Ohki, IEEE Trans. Dielect. Electr. Insul. 21, 929 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (No. 51407134), (Innovative Research Group, No. 51221005), State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE14107) and China Postdoctoral Science Foundation (No. 2016M590619), Natural Science Foundation of Shandong Province (No. ZR2016EEQ28) and The Research Project of Postdoctoral Staff in Qingdao. The SEM work was done at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China. The authors also thank Ms. Dai for her help in using SEM. The authors also thank their colleagues in laboratory for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghong Cheng or Guanglei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Cheng, Y., Chen, S. et al. Dielectric and thermal properties of epoxy resins with TiO2 nanowires. J Mater Sci: Mater Electron 28, 17871–17880 (2017). https://doi.org/10.1007/s10854-017-7728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7728-2

Navigation