Skip to main content
Log in

Magnetic, electrical and dielectric properties of microwave sintered Sr1−x La x Fe12−x Ni x O19 (x = 0−0.35) hexaferrites used for nonreciprocal LTCF devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Sr1−x La x Fe12−x Ni x O19 (x = 0−0.35) hexaferrites with 3 wt% Bi2O3 additive were prepared by microwave sintering method at 870 °C. Crystal structure, microstructure, magnetic, electrical, and dielectric properties of these low temperature sintered ferrites were investigated. The results show that the pure M-type phase is obtained for the ferrites with 0≤ x ≤0.25. With further increasing substitution amount, the multiphase structure is inevitably formed, and the LaFeO3 phase coexists with the M-type phase. In single M-type phase region, the variation of magnetic properties with La3+–Ni2+ substitution amount can be well explained based on the occupancy effects of La3+ and Ni2+ in magnetoplumbite structure. Besides, the electrical transport and polarization behaviors of the ferrites are clearly discussed. It suggests that the appropriate La3+–Ni2+ substitution (x = 0.2) improves their intrinsic magnetic and electrical properties for applying in nonreciprocal low temperature co-fired ferrite (LTCF) devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.G. Harris, Modern microwave ferrites. IEEE Trans. Magn. 48, 1075 (2012)

    Article  Google Scholar 

  2. T. Jensen, V. Krozer, C. Kjaergaard, Realisation of microstrip junction circulator using LTCC technology. Electron. Lett. 47, 111 (2011)

    Article  Google Scholar 

  3. R. Dijk, R.G. Bent, M. Ashari, M. Mckay, Circulator integrated in low temperature co-fired ceramics technology, in Proceedings of the 44th European Microwave Conference, 2014, p. 1544

  4. M. Shalaby, M. Peccianti, Y. Ozturk, R. Morandotti, A magnetic non-reciprocal isolator for broadband terahertz operation. Nat. Commun. 4, 67 (2013)

    Article  Google Scholar 

  5. N.A. Estep, D.L. Sounas, J. Soric, A. Alù, Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923 (2014)

    Article  Google Scholar 

  6. P. Jing, J. Du, J. Wang, J. Wei, L. Pan, J. Li, Q. Liu, Width-controlled M-type hexagonal strontium ferrite (SrFe12O19) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning. Sci. Rep. 5, 15089 (2015)

    Article  Google Scholar 

  7. H.N. Zadeh, G. Oder, J. Hesse, T. Reimann, J. Töpfer, T. Rabe, Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers. J. Mater. Sci. 37, 100 (2016)

    Google Scholar 

  8. H.T. Yu, J.S. Liu, W.L. Zhang, S.R. Zhang, Ultra-low sintering temperature ceramics for LTCC applications: a review. J. Mater. Sci. 26, 9414 (2015)

    Google Scholar 

  9. L. Peng, L.Z. Li, X.X. Zhong, Y.B. Hu, S.M. Chen, Effects of La3+–Zn2+ doping on the structure, magnetic, electrical, and dielectric properties of low temperature sintered Sr-hexaferrites. J. Magn. Magn. Mater. 428, 73 (2017)

    Article  Google Scholar 

  10. V.G. Harris, A. Geiler, Y.J. Chen, S.D. Yoon, M.Z. Wu, A. Yang, Z.H. Chen, P. He, P.V. Parimi, X. Zou, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035 (2009)

    Article  Google Scholar 

  11. K.A. Korolev, L. Subramanian, M.N. Afsar, Complex permittivity and permeability of strontium ferrites at millimeter waves. J. Appl. Phys. 99, 08F504 (2006)

    Article  Google Scholar 

  12. B.K. O’Neil, J.L. Young, Experimental investigation of a self-based microstrip circulator. IEEE Trans. Microw. Theory Technol. 57, 1669 (2009)

    Article  Google Scholar 

  13. J. Wang, A. Yang, Y. Chen, Z. Chen, Self biased Y-junction circulator at Ku band. IEEE Microw. Wireless Compon. Lett. 21, 292 (2011)

    Article  Google Scholar 

  14. Y.L. Liu, Y.X. Li, H.W. Zhang, D.M. Chen, Q.Y. Wen, Study on magnetic properties of low temperature sintering M-Barium hexaferrites. J. Appl. Phys. 107, 09A507 (2010)

    Article  Google Scholar 

  15. Y.X. Li, Y.L. Liu, H.W. Zhang, L.K. Han, The sintering properties and interfacial investigation of barium ferrite and ceramic cofiring system for the application of LTCC technology. J. Appl. Phys. 105, 07A745 (2009)

    Article  Google Scholar 

  16. D.M. Chen, Y.L. Liu, Y.X. Li, W.G. Zhong, H.W. Zhang, Low-temperature sintering of M-type barium ferrite with BaCu(B2O5) additive. J. Magn. Magn. Mater. 324, 449 (2012)

    Article  Google Scholar 

  17. V.V. Rane, G.J. Phatak, Ultra-high-frequency behavior of BaFe12O19 hexaferrite for LTCC substrates. IEEE Trans. Magn. 49, 5048 (2013)

    Article  Google Scholar 

  18. Z.L. Zheng, H.W. Zhang, Complex permittivity and permeability of Low-temperature sintered M-Type barium gexaferrite in Ka-band frequency range. IEEE Trans. Magn. 49, 4230 (2013)

    Article  Google Scholar 

  19. L. Peng, L.Z. Li, R. Wang, Y. Hu, X.Q. Tu, X.X. Zhong, Synthesis and characteristics of La3+–Co2+ substituted Sr-hexaferrites for microwave LTCC circulators. J. Magn. Magn. Mater. 404, 170 (2016)

    Article  Google Scholar 

  20. L. Qiao, L.S. You, J.W. Zheng, L.Q. Jiang, J.W. Sheng, The magnetic properties of strontium hexaferrties with La–Cu substitution prepared by SHS method. J. Magn. Magn. Mater. 318, 74 (2007)

    Article  Google Scholar 

  21. L. Peng, L.Z. Li, R. Wang, Y. Hu, X.Q. Tu, X.X. Zhong, O19 (x = 0–0.5) ferrites for use in low temperature co-fired ceramics technology. J. Alloy Comp. 656, 290 (2016),

    Article  Google Scholar 

  22. L. Peng, L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, Crystal structure and physical properties of microwave sintered Sr1 − xLaxFe12–xCuxO19 (x = 0–0.5) ferrites for LTCC applications. J. Magn. Magn. Mater. 411, 62 (2016)

    Article  Google Scholar 

  23. N. Zhang, W.P. Ding, W. Zhong, D.Y. Xing, Y.W. Du, Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3. Phys. Rev. B 56, 8138 (1997)

    Article  Google Scholar 

  24. U.V. Chhaya, R.G. Kulkarni, Metal-insulator type transition in aluminum and chromium co-substituted nickel ferrites. Mater. Lett. 39, 91 (1999)

    Article  Google Scholar 

  25. N. Zhang, Q.J. Li, S.G. Huang, Y. Yu, J. Zheng, C. Cheng, C.C. Wang, Dielectric relaxations in multiferroic La2Ti2O7 ceramics. J. Alloy. Comp. 652, 1 (2015)

    Article  Google Scholar 

  26. A.S. Nasab, H. Naderi, M.R. Nasrabadi, M.R. ganjali, Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method. J. Mater. Sci. 28, 8588 (2017)

    Google Scholar 

  27. M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, J.M. Munoz, Synthesis, physical, magnetic and electrical properties of Al–Ga substituted co-precipitated nanocrystalline strontium hexaferrite. J. Magn. Magn. Mater. 320, 881 (2008)

    Article  Google Scholar 

  28. M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383 (2008)

    Article  Google Scholar 

  29. M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, Effect of doping of Zr–Zn binary mixtures on structural, electrical and magnetic properties of Sr-hexaferrite nanoparticles. J. Alloy. Comp. 478, 736 (2009)

    Article  Google Scholar 

  30. M.J. Iqbal, M.N. Ashiq, P.H. Gomez, J.M. Munoz, Magnetic, physical and electrical properties of Zr–Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scr Mater. 57 (2007) 1093

    Article  Google Scholar 

  31. M.V. Rane, D. Bahadur, A.K. Nigam, C.M. Srivastava, Mössbauer and FT-IR studies on non-stoichiometric barium hexaferrites. J. Magn. Magn. Mater. 192, 288 (1999)

    Article  Google Scholar 

  32. F.K. Lotgering, Magnetic anisotropy and saturation of LaFe12O19 and some related compounds. J. Phys. Chem. Solids 35, 1633 (1974)

    Article  Google Scholar 

  33. D. Seifert, J. Töpfer, F. Langenhorst, J.M. Breton, H. Chiron, L. Lechevallier, Synthesis and magneitc properties of La-substitued M-type hexaferrites. J. Magn. Magn. Mater. 321, 4045 (2009)

    Article  Google Scholar 

  34. X.S. Liu, W. Zhong, S. Yang, Z. Yu, B.X. Gu, Y.W. Du, Influence of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites. J. Magn. Magn. Mater. 238, 207 (2012)

    Article  Google Scholar 

  35. L. Peng, L.Z. Li, X.Q. Tu, R. Wang, Y. Hu, X.X. Zhong, Complex electrical transport behavior in low temperature sintered M-type hexaferrites. J. Magn. Magn. Mater 402, 110 (2016)

    Article  Google Scholar 

  36. X. Obradors, A. Isalgue, A. Collomb, A. Labarta, M. Pernet, J.A. Pereda, J. Tejada, J.C. Joubert, Cation distribution and random spin canting in LaZnFe11O19. J. Phys. C 19, 6605 (1986)

    Article  Google Scholar 

  37. Z. Yang, C.S. Wang, X.H. Li, H.X. Zeng, (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng. 90, 142 (2002)

    Article  Google Scholar 

  38. L. Peng, l..Z. Li, X.X. Zhong, Y. Hu, X.Q. Tu, R. Wang, Magnetic, electrical, and dielectric properties of La–Cu substituted Sr-hexaferrites for use in microwave LTCC devices. J. Alloy. Comp. 665, 31 (2016)

    Article  Google Scholar 

  39. X.S. Liu, P.H. Gomez, K. Huang, S.Q. Liu, Y. Wang, X. Cai, H.J. Sun, B. Ma, Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force. J. Magn. Magn. Mater. 305, 524 (2006)

    Article  Google Scholar 

  40. L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric Loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 51502025, the Project of Science and Technology Supporting Plan in Sichuan Province of China under Grant No. 2016GZ0108, and the Open Fund of Sichuan Province Key Laboratory of Information Materials and Devices Application under Grant No. 2015Z001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Li, L. Magnetic, electrical and dielectric properties of microwave sintered Sr1−x La x Fe12−x Ni x O19 (x = 0−0.35) hexaferrites used for nonreciprocal LTCF devices. J Mater Sci: Mater Electron 28, 17816–17826 (2017). https://doi.org/10.1007/s10854-017-7722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7722-8

Navigation