Skip to main content
Log in

Aligned multi-walled carbon nanotubes (MWCNT) and vapor grown carbon fibers (VGCF) reinforced epoxy adhesive for thermal conductivity applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present study deals with the development of aligned multi-walled carbon nanotubes (MWCNT) and vapour grown carbon fibers (VGCF) reinforced epoxy adhesive system used as an alternative to Pb/Sn soldering element. The alignment of MWCNTs was carried out in a specific designed instrument exerting of an external electric field. Solution casting technique was used for the fabrication of epoxy adhesive system incorporated with aligned MWCNT and VGCF. Scanning electron microscopy and Atomic force microscopy was carried out to determine the degree of alignment of MWCNTs. Owing to the formation of continuous path for the flow of electrons, 3 wt% of aligned MWCNT with 3 wt% of VGCF reinforced epoxy adhesive achieved about five orders of magnitude higher in the thermal conductivity compared to pure epoxy. Further, the experimental results showed that the shear strength of epoxy/3% MWCNT/3% VGCF adhesive system was 112% higher than the strength of pure polymer, emphasizing the advantages of aligned MWCNT on stiffness and strength. Dynamic Mechanical Analysis and Thermo-gravimetric analysis was carried out to study the thermo-mechanical and thermal degradation behaviour of epoxy adhesive formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, Polym. Adv. Technol. (2017). doi:10.1002/pat.4072

    Google Scholar 

  2. A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, J. Mater. Sci. 28, 8908 (2017). doi:10.1007/s10854-017-6621-3

    Google Scholar 

  3. T. Villmow, S. Pegel, A. John, R. Rentenberger, P. Pötschke, Mater. Today 14, 340 (2011)

    Article  Google Scholar 

  4. Y. Li, K.S. Moon, C.P. Wong, Nano-Conductive Adhesives for Nano-Electronics Interconnection. In Nano-Bio-Electronic, Photonic and MEMS Packaging. (Springer, New York, 2010)

    Google Scholar 

  5. A.Paipetis,V Kostopoulos, Carbon Nanotube Enhanced Aerospace Composite Materials: A New Generation of Multifunctional Hybrid Structural Composites. (Springer, Dordrecht, 2012)

    Google Scholar 

  6. J.F. Caers, X.J. Zhao, E.H. Wong, C.K. Ong, Z.X. Wu, R. Ranjoo, in Proceedings electronic components and technology conference, vol 1176, (2016)

  7. T.F. Zhang, Z.P. Li, J.Z. Wang, W.Y. Kong, G.A. Wu, Y.Z. Zheng, Y.W. Zhao, E.X. Yao, N.X. Zhuang, L.B. Luo, Sci. Rep. 6, 38569 (2016)

    Article  Google Scholar 

  8. K. Balasubramanian, M. Burghard, Anal. Bioanal. Chem. 35, 452 (2006)

    Article  Google Scholar 

  9. P. Gupta, M. Rajput, N. Singla, V. Kumar, D. Lahiri, Polymer 89, 119 (2016)

    Article  Google Scholar 

  10. O. Osazuwa, M. Kontopoulou, P. Xiang, Z. Ye, A. Docoslis, Procedia Eng. 42, 1414 (2012)

    Article  Google Scholar 

  11. D. Domingues, E. Logakis, A.A. Skordos, Carbon 50, 2493 (2012)

    Article  Google Scholar 

  12. M. Monti, M. Natali, L. Torre, J.M. Kenny, Carbon 50, 2453 (2012)

    Article  Google Scholar 

  13. I.C. Finegan, G.G. Tibbetts, J. Mater. Res. 16, 1668 (2001)

    Article  Google Scholar 

  14. G.G. Tibbetts, Carbon 27, 745 (1989)

    Article  Google Scholar 

  15. V.Z. Mordkovich, Theor. Found. Chem. Eng. 37, 429 (2003)

    Article  Google Scholar 

  16. J.E. Jang, S.N. Cha, Y. Choi, T.P. Butler, D.J. Kang, D.G. Hasko, J.E. Jung, Y.W. Jin, J.M. Kim, G.A. Amaratunga, Appl. Phys. Lett. 93, 113105 (2008)

    Article  Google Scholar 

  17. H.E. Troiani, M.M. Yoshida, G.A. Camacho-Bragado, M.A. Marques, A. Rubio, J.A. Ascencio, M. Jose-Yacaman, Nano Lett. 3, 151 (2003)

    Article  Google Scholar 

  18. L.B. Kish, P.M. Ajayan, Appl. Phys. Lett. 93106, 2004 (2008)

  19. J.T. Tsai, H.C. Ko, Appl. Phys. Lett. 88, 13104 (2006)

    Article  Google Scholar 

  20. Y.J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F.S. Ou, A. Avadhanula, R. Vajtai, S. Curran, Nano Lett. 6, 413 (2006)

    Article  Google Scholar 

  21. L. Zhu, Y. Sun, D.W. Hess, C. Wong, Nano Lett. 6, 243 (2006)

    Article  Google Scholar 

  22. K. Prabakaran, A.K. Palai, S. Mohanty, S.K. Nayak, RSC Adv. 5, 66563 (2015)

    Article  Google Scholar 

  23. H. Sun, X. You, Y. Jiang, G. Guan, X. Fang, J. Deng, P. Chen, Y. Luo, H. Peng, Angew. Chem. Int. Ed. 53, 9526 (2014)

    Article  Google Scholar 

  24. Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, J. Mater. Chem. A 1, 258 (2013)

    Article  Google Scholar 

  25. Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin, H. Peng, J. Mater. Chem. A 1, 954 (2013)

    Article  Google Scholar 

  26. S. Park, M. Vosguerichian, Z. Bao, Nanoscale 5, 1727 (2013)

    Article  Google Scholar 

  27. M. Lee, J. Im, B.Y. Lee, S. Myung, J. Kang, L. Huang, Y.K. Kwon, S. Hong, Nat. Nanotechnol. 1, 66 (2006)

    Article  Google Scholar 

  28. M. Lee, M. Noah, J. Park, M.J. Seong, Y.K. Kwon, S. Hong, Small 5, 1642 (2009)

    Article  Google Scholar 

  29. M.A. Al-Khedher, C. Pezeshki, J.L. McHale, F.J. Knorr, Nanotechnology 18, 355703 (2007)

    Article  Google Scholar 

  30. A.M. Marconnet, N. Yamamoto, M.A. Panzer, B.L. Wardle, K.E. Goodson, ACS Nano 5, 4818 (2011)

    Article  Google Scholar 

  31. S.U. Khan, J.R. Pothnis, J.K. Kim, Compos. Part A 49, 26 (2013)

    Article  Google Scholar 

  32. S.B. Jagtap, D. Ratna, Expr. Polym. Lett. 7, 329 (2013)

    Article  Google Scholar 

  33. A.J. Kinloch, MRS Bull. 28, 445 (2003)

    Article  Google Scholar 

  34. D.S. Kim, C. Baek, H.J. Ma, D.K. Kim, Ceram. Int. 42, 7141 (2015)

    Article  Google Scholar 

  35. F. Ahmadpoor, S.M. Zebarjad, K. Janghorban, Mater. Chem. Phys. 139, 113 (2013)

    Article  Google Scholar 

  36. E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, J. Appl. Phys. 94, 6034 (2003)

    Article  Google Scholar 

  37. S.Y. Kwon, I.M. Kwon, Y.G. Kim, S. Lee, Y.S. Seo, Carbon 55, 285 (2013)

    Article  Google Scholar 

  38. W. Sun, H. Tomita, S. Hasegawa, Y. Kitamura, M. Nakano, J. Suehiro, J. Phys. D 44, 445303 (2011)

    Article  Google Scholar 

  39. Z. Ren, Y. Lan, Y. Wang, Aligned Carbon Nanotubes Physics, Concepts, Fabrication and Devices, 1st edn. (Springer, Berlin, 2013)

    Book  Google Scholar 

  40. M.G. Zaidi, S.K. Joshi, M. Kumar, D. Sharma, A. Kumar, S. Alam, P.L. Sah, Carbon Lett. 14, 218 (2013)

    Article  Google Scholar 

  41. A.E. Aliev, M.H. Lima, E.M. Silverman, R.H. Baughman, Nanotechnology 21, 35709 (2010)

    Article  Google Scholar 

  42. M.H. Al-Saleh, U. Sundararaj, Carbon 47, 2 (2009)

    Article  Google Scholar 

  43. P. Gonnet, Z. Liang, E.S. Choi, R.S. Kadambala, C. Zhang, J.S. Brooks, B. Wang, L. Kramer, Curr. Appl. Phys. 6, 119 (2006)

    Article  Google Scholar 

  44. J.E. Fischer, W. Zhou, J. Vavro, M.C. Llaguno, C. Guthy, R. Haggenmueller, M.J. Casavant, D.E. Walters, R.E. Smalley, J. Appl. Phys. 93, 2157 (2003)

    Article  Google Scholar 

  45. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)

    Article  Google Scholar 

  46. K. Zhang, M.M.F. Yuen, J.H. Gao, B. Xu, CIRP Ann. Manuf. Technol. 56, 245 (2007)

    Article  Google Scholar 

  47. C.P. Wong, K.S. Moon, Y. Li, Nano-Bio-Electronic, Photonic and MEMS Packaging. (Springer, New York, 2010).)

    Book  Google Scholar 

  48. Y. Chen, J. Ting, Carbon 40, 359 (2002)

    Article  Google Scholar 

  49. B. Li, S. Dong, X. Wu, C. Wang, X. Wang, J. Fang, Compos. Sci. Technol. (2017). doi:10.1016/j.compscitech.2017.05.006

    Google Scholar 

  50. S. Ghose, K.A. Watson, D.C. Working, J.W. Connell, J.G. Smith Jr., Y.P. Sun, Compos. Sci. Technol. 68, 1843 (2008)

    Article  Google Scholar 

  51. H. Huang, C.H. Liu, Y. Wu, S.H. Fan, Adv. Mater. 17, 1652 (2005)

    Article  Google Scholar 

  52. Q. Liao, Z. Liu, W. Liu, C. Deng, N. Yang, Sci. Rep. 5, 16543 (2015)

    Article  Google Scholar 

  53. S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski, Nat. Mater. 2, 731 (2003)

    Article  Google Scholar 

  54. N. Shenogina, S. Shenogin, L. Xue, P. Keblinski, Appl. Phys. Lett. 87, 133106 (2005)

    Article  Google Scholar 

  55. G. Lin, B.H. Xie, J. Hu, X. Huang, G.J. Zhang, J. Nanomater. 16, 260 (2015)

    Google Scholar 

  56. K.K. Mahato, D.K. Rathore, R.K. Prusty, K. Dutta, B.C. Ray, IOP Conf. Ser. 178, 12006 (2017)

    Article  Google Scholar 

  57. M.B. Salam, M.V. Hosur, S. Zainuddin, S. Jeelani, Open J. Compos. Mater. 3, 1 (2013)

    Article  Google Scholar 

  58. G.V. Ramana, B. Padya, R.N. Kumar, K.V. Prabhakar, P.K. Jain, Indian J. Eng. Mat. Sci. 17, 331 (2010)

    Google Scholar 

  59. V. Causin, C. Marega, A. Marigo, G. Ferrara, A. Ferraro, Eur. Polym. J. 42, 3153 (2006)

    Article  Google Scholar 

  60. M. Hossain, M. Chowdhury, M. Salam, N. Jahan, J. Malone, M. Hosur, S. Jeelani, N. Bolden, J. Compos. Mater. 49, 2251 (2014)

    Article  Google Scholar 

  61. X. Shen, J. Jia, C. Chen, Y. Li, J.K. Kim, J. Mater. Sci. 49, 3225 (2014)

    Article  Google Scholar 

  62. A. Vivet, W. Leclerc, B.B. Doudou, J. Chen, C. Poilâne, Fibers 3, 134 (2015)

    Article  Google Scholar 

  63. M. Sudheer, R. Prabhu, K. Raju, T. Bhat, Adv. Mater. Sci. Eng. 2014, 1 (2014). doi:10.1155/2014/970468

  64. J. Saji, S.P. Mahapatra, J. Basic Appl. Eng. Res. 1, 33 (2014)

    Google Scholar 

  65. M.R. Guden, S.G. Prolongo, T. Gomez-del Rio, A. Urena, Int. J. Adhes. Adhes. 31, 695 (2011)

    Article  Google Scholar 

  66. V.K. Srivastava, S. Singh, Int. J. Compos. Mater. 2, 1 (2012)

    Google Scholar 

  67. S.K. Sahoo, S. Mohanty, S.K. Nayak, RSC Adv. 5, 13674 (2015)

    Article  Google Scholar 

  68. S.J. Park, F.L. Jin, C. Lee, Mater. Sci. Eng. A 402, 335 (2005)

    Article  Google Scholar 

  69. V.B. Borugadda, V.V. Goud, Thermochim. Acta 577, 33 (2014)

    Article  Google Scholar 

  70. R. Hardis, Cure Kinetics Characterization and Monitoring of An Epoxy Resin for Thick Composite Structures. Graduate Theses and Dissertations, Paper 12608. (Iowa State University, US, 2012)

  71. M. Dehghan, I. Sbarski, Int. J. Chem. Nucl. Metall. Mater. Eng. 8, 119 (2014)

    Google Scholar 

  72. K. Yu, M. Wang, J. Wu, K. Qian, J. Sun, X. Lu, Nanomaterials 6, 89 (2016)

    Article  Google Scholar 

  73. S. Gupta, A. Rahaman, Int. J. Sci. Publ. 5, 1 (2015)

  74. M.I. Reddy, V.S. Reddy, Int. J. Eng. Res. Technol. 3, 410 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Board of Research in Nuclear Sciences-BRNS (Grant No. 39/11/2015-BRNS), Department of Atomic Energy (DAE), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Parhi, A., Panda, B.P. et al. Aligned multi-walled carbon nanotubes (MWCNT) and vapor grown carbon fibers (VGCF) reinforced epoxy adhesive for thermal conductivity applications. J Mater Sci: Mater Electron 28, 17655–17674 (2017). https://doi.org/10.1007/s10854-017-7704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7704-x

Navigation