Fabrication and characterization of glass and glass-ceramic from rice husk ash as a potent material for opto-electronic applications


Zinc silicate (ZnO–SiO2) glass system were fabricated using melt-quench method with zinc oxide (ZnO) and white rice husk ash (WRHA) with compositions of (ZnO)x(WRHA)1−x where (x = 0.55, 0.60, 0.65 and 0.70 wt%). Energy Dispersive X-ray Fluorescence (EDXRF), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and UV–Visible (UV–Vis) absorption spectroscopy were used to investigate the structural and optical properties of the samples. From XRD measurement, only one sample is glass and others were in crystalline form as WRHA is used to replace silica (SiO2). This is because WRHA possess nucleating agents in its composition and this causes the samples to be highly crystalline. ZnO in the other hand is a highly crystalline material and encourages the formation of crystalline phase in the samples. FTIR analysis shows that the non-bridging oxygen’s (NBO’s) are formed as the amount of ZnO in the samples increases. The optical band gap shows that the optical band gap rises due to direct forbidden transition. ZnO–SiO2 glass system has variety of applicable characteristic because it possesses high level of chemical inertness for variety of chemical applications and it also gives various color emission which can be used in the plasma display panels (PDPs) and cathode-ray phosphor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    D. Ehrt, The effect of ZnO, La2O3, PbO and Bi2O3 on the properties of binary borate glasses and melts. Phys. Chem. Glasses-B 47, 669–674 (2006)

    Google Scholar 

  2. 2.

    M. Goswami, P. Sengupta, K. Sharma, R. Kumar, V.K. Shrikhande, J.M.F. Ferreira, G.P. Kothiyal, Crystallization behaviour of Li2O–ZnO–SiO2 glass-ceramics system. Ceram. Int. 33, 863–867 (2007)

    Article  Google Scholar 

  3. 3.

    I.W. Donald, B.L. Metcalfe, L.A. Gerrard, S.K. Fong, The influence of Ta2O5 additions on the thermal properties and crystallization kinetics of a lithium zinc silicate glass. J. Non-Cryst. Solids 354, 301–310 (2008)

    Article  Google Scholar 

  4. 4.

    D. Segets, J. Gradl, R.K. Taylor, V. Vassilev, W. Peukert, Analysis of optical absorbance spectra for the determination of ZnO nano particle size distribution, solubility, and surface energy. ACS Nano 3, 1703–1710 (2009)

    Article  Google Scholar 

  5. 5.

    B. Tiwari, M. Pandey, S.C. Gadkari, G.P. Kothiyal, Synthesis and structural studies of Multi-Component strontium zinc silicate glass-ceramics. AIP Conf. Proc. 1512, 568–569, (2013)

    Article  Google Scholar 

  6. 6.

    C. Xu, J. Chun, K. Rho, D.E. Kim, Fabrication and photoluminescence of zinc silicate/silica modulated ZnO nanowires. Nanotechnology 16, 2808–2812 (2005)

    Article  Google Scholar 

  7. 7.

    C.S. Lee, K.A. Matori, S.H. Ab Aziz, H.M. Kamari, I. Ismail, M.H.M. Zaid, Influence of zinc oxide on the physical, structural and optical band gap of zinc silicate glass system from waste rice husk ash. Optik 136, 129–135 (2017)

    Article  Google Scholar 

  8. 8.

    L. Yu, M. Nogami, Local structure and photoluminescent characteristics of Eu3+ in ZnO–SiO2 glasses. J. Sol–Gel Sci. Technol. 43, 355–360 (2007)

    Article  Google Scholar 

  9. 9.

    X.L. Duan, D.R. Yuan, D. Xu, M.K. Lu, X.Q. Wang, Z.H. Sun, Z.M. Wang, H.Q. Sun, Y.Q. Lu, Preparation and characterization of Co2+-doped ZnO–Al2O3–SiO2 glass-ceramics by the sol–gel method. Mater. Res. Bull. 38, 705–711 (2003)

    Article  Google Scholar 

  10. 10.

    G. Kaur, G. Pickrell, G. Kimsawatde, D. Homa, H.A. Allbee, N. Sriranganathan, Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol–gel based CaO–P2O5–SiO2–B2O3–ZnO bioactive glasses. Sci. Rep. 4, 4392 (2014)

    Article  Google Scholar 

  11. 11.

    M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, Z.A. Wahab, Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique. J. Mater. Sci. 26, 3722–3729 (2015)

    Google Scholar 

  12. 12.

    L. Esteban-Tejeda, C. Prado, B. Cabal, J. Sanz, R. Torrecillas, J.S. Moya, Antibacterial and antifungal activity of ZnO containing glasses. PLoS ONE 10, e0132709 (2015)

    Article  Google Scholar 

  13. 13.

    T.R. Stechert, M.J.D. Rushton, R.W. Grimes, Predicted mechanism for enhanced durability of zinc containing silicate glasses. J. Am. Ceram. Soc. 96, 1450–1455 (2013)

    Article  Google Scholar 

  14. 14.

    A.M. Abdelghany, F.H. El Batal, H. A. El Batal, Zinc containing borate glasses and glass-ceramics: search for biomedical applications. Process. Appl. Ceram. 8, 185–193 (2014)

    Article  Google Scholar 

  15. 15.

    N. Yalcin, V. Sevinc, Studies on silica obtained from rice husk. Ceram. Int. 27, 219–224 (2001)

    Article  Google Scholar 

  16. 16.

    R.V. Krishnarao, J. Subrahmanyam, T.J. Kumar, Studies on the formation of black particles in rice husk silica ash. J. Eur. Ceram. Soc. 21, 99–104 (2001)

    Article  Google Scholar 

  17. 17.

    V.P. Della, I. Kuhn, D. Hotza, Rice husk ash as an alternate source for active silica production. Mater. Lett. 57, 818–821 (2002)

    Article  Google Scholar 

  18. 18.

    W. Leenakul, T. Tunkasiri, N. Tongsiri, K. Pengpat, J. Ruangsuriya, Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica. Mat. Sci. Eng. C 61, 695–704 (2016)

    Article  Google Scholar 

  19. 19.

    T. Lee, R. Othman, F.Y. Yeoh, Development of photoluminescent glass derived from rice husk. Biomass Bioenerg. 59, 380–392 (2013)

    Article  Google Scholar 

  20. 20.

    F. Naghizadeh, M.R.A. Kadir, A. Doostmohammadi, F. Roozbahani, N. Iqbal, M.M. Taheri, S.V. Naveen, T. Kamarul, Rice husk derived bioactive glass-ceramic as a functional bioceramic: synthesis, characterization and biological testing. J. Non-Cryst. Solids 427, 54–61 (2015)

    Article  Google Scholar 

  21. 21.

    P.J. Ramadhansyah, A.W. Mahyun, M.Z.M. Salwa, B.A. Bakar, M.M. Johari, M.W. Ibrahim, Thermal analysis and pozzolanic index of rice husk ash at different grinding time. Procedia Eng. 50, 101–109 (2012)

    Article  Google Scholar 

  22. 22.

    A.M. Yusof, N.A. Nizam, N.A.A. Rashid, Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. J. Porous Mat. 17, 39–47 (2010)

    Article  Google Scholar 

  23. 23.

    T.H. Liou, Preparation and characterization of nano-structured silica from rice husk. Mat. Sci. Eng. A 364, 313–323 (2004)

    Article  Google Scholar 

  24. 24.

    A. Bahrami, M.I. Pech-Canul, C.A. Gutiérrez, N. Soltani, Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al–Si–Mg alloys. Appl. Surf. Sci. 357, 1104–1113 (2015)

    Article  Google Scholar 

  25. 25.

    D. Chopra, R. Siddique, Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst. Eng. 130, 72–80 (2015)

    Article  Google Scholar 

  26. 26.

    M.F. Serra, M.S. Conconi, M.R. Gauna, G. Suárez, E.F. Aglietti, N.M. Rendtorff, Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure. J. Asian Ceram. Soc. 4, 61–67 (2016)

    Article  Google Scholar 

  27. 27.

    D. Prasetyoko, Z. Ramli, S. Endud, H. Hamdan, B. Sulikowski, Conversion of rice husk ash to zeolite beta. Waste Manage 26, 1173–1179 (2006)

    Article  Google Scholar 

  28. 28.

    G. Gao, N. Da, S. Reibstein, L. Wondraczek, Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics. Opt. Express 18, A575-A583 (2010)

    Google Scholar 

  29. 29.

    A.M. El-Kady, A.F. Ali, Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceram. Int. 38, 1195–1204 (2012)

    Article  Google Scholar 

  30. 30.

    B.J. Saikia, G. Parthasarathy, Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206 (2010)

    Article  Google Scholar 

  31. 31.

    E.G. Pantohan, R.T. Candidato Jr., R.M. Vequizo, Surface characteristics and structural properties of sol-gel prepared ZnO–SiO2 nanocomposite powders. IOP Conf. Ser. 79, 012024 (2015)

    Article  Google Scholar 

  32. 32.

    A.U. Rana, M. Kang, H.S. Kim, Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage. Sci. Rep. 6, 24870 (2015)

    Article  Google Scholar 

  33. 33.

    E.N. Bunting, Phase equilibria in the system SiO2–ZnO. J. Am. Ceram. Soc. 13, 5–10 (1930)

    Article  Google Scholar 

  34. 34.

    B. Li, M. Xu, B. Tang, Effects of ZnO on crystallization, microstructures and properties of BaO–Al2O3–B2O3–SiO2 glass-ceramics. J. Mater. Sci. Mater. Electron 27, 70–76 (2016)

    Article  Google Scholar 

  35. 35.

    N.A.S. Omar, Y.W. Fen, K.A. Matori, M.H.M. Zaid, M.R. Norhafizah, M. Nurzilla, M.I.M. Zamratul, Synthesis and optical properties of europium doped zinc silicate prepared using low cost solid state reaction method. J. Mater. Sci. 27, 1092–1099 (2016)

    Google Scholar 

  36. 36.

    A.T.G. Kullberg, A.A.S. Lopes, J.P.B. Veiga, M.M.R.A. Lima, R.C.C. Monteiro, Formation and crystallization of zinc borosilicate glasses: influence of the ZnO/B2O3 ratio. J. Non-Cryst. Solids 441, 79–85 (2016)

    Article  Google Scholar 

  37. 37.

    G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J. Phys. Chem. B 106, 9753–9760 (2002)

    Article  Google Scholar 

  38. 38.

    H.A. Abo-Mosallam, H. Darwish, S.M. Salman, Crystallization characteristic and properties of some zinc containing soda lime silicate glasses. J. Mater. Sci. 21, 889–896 (2010)

    Google Scholar 

  39. 39.

    T. Murata, Y. Moriyama, K. Morinaga, Relationship between the local structure and spontaneous emission probability of Er3+ in silicate, borate, and phosphate glasses. Sci. Technol. Adv. Mater. 1, 139–145 (2000)

    Article  Google Scholar 

  40. 40.

    A.M. Efimov, Vibrational spectra, related properties, and structure of inorganic glasses. J. Non-Cryst. Solids 253, 95–118 (1999)

    Article  Google Scholar 

  41. 41.

    C.I. Merzbacher, W.B. White, The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. J. Non-Cryst. Solids 130, 18–34 (1991)

    Article  Google Scholar 

  42. 42.

    T. Nakazawa, Infrared spectroscopy analysis and MNDO calculations for irradiation-Induced structural change of lithium ortho-silicate. JAERI-Conf. 006, (2005)

  43. 43.

    R.M.M. Morsi, S.I.A. El-Ghany, M.M. Morsi, Electrical properties of silicate glasses of low level gadolinium oxide doping including dielectric and infrared measures. J. Mater. Sci. 26, 1419–1426 (2015)

    Google Scholar 

  44. 44.

    M.H.M. Zaid, K.A. Matori, H.A.A. Sidek, M.K. Halimah, Z.A. Wahab, Y.W. Fen, I.M. Alibe, Synthesis and characterization of low cost willemite based glass-ceramic for opto-electronic applications. J. Mater. Sci. 27, 11158–11167 (2016)

    Google Scholar 

  45. 45.

    N.A. El-Alaily, W.M. Abdallah, B.A. Sabrah, A.I. Saad, Preparation and characterization of immobilizing radioactive waste glass from industrial wastes. Silicon 9, 117–130 (2017)

    Article  Google Scholar 

  46. 46.

    H. Darwish, S. Ibrahim, M.M. Gomaa, Electrical and physical properties of Na2O–CaO–MgO–SiO2 glass doped with NdF3. J. Mater. Sci. 24, 1028–1036 (2013)

    Google Scholar 

  47. 47.

    J. Sułowska, I. Wacławska, M. Szumera, Comparative study of zinc addition effect on thermal properties of silicate and phosphate glasses. J. Therm. Anal. Calorim. 123, 1091–1098 (2016)

    Article  Google Scholar 

  48. 48.

    D. Singh, K. Singh, G. Singh, S. Mohan, M. Arora, G. Sharma, Optical and structural properties of ZnO–PbO–B2O3 and ZnO–PbO–B2O3–SiO2 glasses. J. Phys.-Condes. Matter 20, 075228 (2008)

    Article  Google Scholar 

  49. 49.

    M.H.M. Zaid, K.A. Matori, S.H. Ab Aziz, H.M. Kamari, Z.A. Wahab, N. Effendy, I.M. Alibe, Comprehensive study on compositional dependence of optical band gap in zinc soda lime silica glass system for optoelectronic applications. J. Non-Cryst. Solids 449, 107–112 (2016)

    Article  Google Scholar 

  50. 50.

    E.A. Davis, N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)

    Article  Google Scholar 

  51. 51.

    G. Upender, S. Ramesh, M. Prasad, V.G. Sathe, V.C. Mouli, Optical band gap, glass transition temperature and structural studies of (100 − 2x) TeO2–xAg2O–xWO3 glass system. J. Alloy. Compd. 504, 468–474 (2010)

    Article  Google Scholar 

  52. 52.

    U. Gnutzmann, K. Clausecker, Theory of direct optical transitions in an optical indirect semiconductor with a superlattice structure. Appl. Phys. Lett. 3, 9–14 (1974)

    Google Scholar 

  53. 53.

    S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf, G. Lucovsky, Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry. J. Appl. Phys. 91, 4500–4505 (2002)

    Article  Google Scholar 

  54. 54.

    Z.A. Talib, Y.N. Loh, H.A.A. Sidek, W.M.D.W. Yusoff, W.M.M. Yunus, A.H. Shaari, Optical absorption spectrum of (LiCl)x(P2O5)1–x glass. Ceram. Int. 30, 1715–1717 (2004)

    Article  Google Scholar 

  55. 55.

    M.A. Chaudhry, S. Bilal, Concentration-dependent electrical conductivity of phosphate glasses containing zinc oxide. Mater. Chem. Phys. 41, 299–301 (1995)

    Article  Google Scholar 

  56. 56.

    S.C. Colak, I. Akyuz, F. Atay, On the dual role of ZnO in zinc-borate glasses. J. Non-Cryst. Solids 432, 406–412 (2016)

    Article  Google Scholar 

Download references


The researchers gratefully acknowledge the financial support for this study from the Malaysian Ministry of Higher Education (MOHE) and Universiti Putra Malaysia through the Fundamental Research Grant Scheme (FRGS) and Inisiatif Putra Berkumpulan (IPB) research grant.

Author information



Corresponding author

Correspondence to Mohd Hafiz Mohd Zaid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, C.S., Matori, K.A., Ab Aziz, S.H. et al. Fabrication and characterization of glass and glass-ceramic from rice husk ash as a potent material for opto-electronic applications. J Mater Sci: Mater Electron 28, 17611–17621 (2017). https://doi.org/10.1007/s10854-017-7699-3

Download citation