Abstract
Zinc silicate (ZnO–SiO2) glass system were fabricated using melt-quench method with zinc oxide (ZnO) and white rice husk ash (WRHA) with compositions of (ZnO)x(WRHA)1−x where (x = 0.55, 0.60, 0.65 and 0.70 wt%). Energy Dispersive X-ray Fluorescence (EDXRF), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and UV–Visible (UV–Vis) absorption spectroscopy were used to investigate the structural and optical properties of the samples. From XRD measurement, only one sample is glass and others were in crystalline form as WRHA is used to replace silica (SiO2). This is because WRHA possess nucleating agents in its composition and this causes the samples to be highly crystalline. ZnO in the other hand is a highly crystalline material and encourages the formation of crystalline phase in the samples. FTIR analysis shows that the non-bridging oxygen’s (NBO’s) are formed as the amount of ZnO in the samples increases. The optical band gap shows that the optical band gap rises due to direct forbidden transition. ZnO–SiO2 glass system has variety of applicable characteristic because it possesses high level of chemical inertness for variety of chemical applications and it also gives various color emission which can be used in the plasma display panels (PDPs) and cathode-ray phosphor.
Similar content being viewed by others
References
D. Ehrt, The effect of ZnO, La2O3, PbO and Bi2O3 on the properties of binary borate glasses and melts. Phys. Chem. Glasses-B 47, 669–674 (2006)
M. Goswami, P. Sengupta, K. Sharma, R. Kumar, V.K. Shrikhande, J.M.F. Ferreira, G.P. Kothiyal, Crystallization behaviour of Li2O–ZnO–SiO2 glass-ceramics system. Ceram. Int. 33, 863–867 (2007)
I.W. Donald, B.L. Metcalfe, L.A. Gerrard, S.K. Fong, The influence of Ta2O5 additions on the thermal properties and crystallization kinetics of a lithium zinc silicate glass. J. Non-Cryst. Solids 354, 301–310 (2008)
D. Segets, J. Gradl, R.K. Taylor, V. Vassilev, W. Peukert, Analysis of optical absorbance spectra for the determination of ZnO nano particle size distribution, solubility, and surface energy. ACS Nano 3, 1703–1710 (2009)
B. Tiwari, M. Pandey, S.C. Gadkari, G.P. Kothiyal, Synthesis and structural studies of Multi-Component strontium zinc silicate glass-ceramics. AIP Conf. Proc. 1512, 568–569, (2013)
C. Xu, J. Chun, K. Rho, D.E. Kim, Fabrication and photoluminescence of zinc silicate/silica modulated ZnO nanowires. Nanotechnology 16, 2808–2812 (2005)
C.S. Lee, K.A. Matori, S.H. Ab Aziz, H.M. Kamari, I. Ismail, M.H.M. Zaid, Influence of zinc oxide on the physical, structural and optical band gap of zinc silicate glass system from waste rice husk ash. Optik 136, 129–135 (2017)
L. Yu, M. Nogami, Local structure and photoluminescent characteristics of Eu3+ in ZnO–SiO2 glasses. J. Sol–Gel Sci. Technol. 43, 355–360 (2007)
X.L. Duan, D.R. Yuan, D. Xu, M.K. Lu, X.Q. Wang, Z.H. Sun, Z.M. Wang, H.Q. Sun, Y.Q. Lu, Preparation and characterization of Co2+-doped ZnO–Al2O3–SiO2 glass-ceramics by the sol–gel method. Mater. Res. Bull. 38, 705–711 (2003)
G. Kaur, G. Pickrell, G. Kimsawatde, D. Homa, H.A. Allbee, N. Sriranganathan, Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol–gel based CaO–P2O5–SiO2–B2O3–ZnO bioactive glasses. Sci. Rep. 4, 4392 (2014)
M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, Z.A. Wahab, Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique. J. Mater. Sci. 26, 3722–3729 (2015)
L. Esteban-Tejeda, C. Prado, B. Cabal, J. Sanz, R. Torrecillas, J.S. Moya, Antibacterial and antifungal activity of ZnO containing glasses. PLoS ONE 10, e0132709 (2015)
T.R. Stechert, M.J.D. Rushton, R.W. Grimes, Predicted mechanism for enhanced durability of zinc containing silicate glasses. J. Am. Ceram. Soc. 96, 1450–1455 (2013)
A.M. Abdelghany, F.H. El Batal, H. A. El Batal, Zinc containing borate glasses and glass-ceramics: search for biomedical applications. Process. Appl. Ceram. 8, 185–193 (2014)
N. Yalcin, V. Sevinc, Studies on silica obtained from rice husk. Ceram. Int. 27, 219–224 (2001)
R.V. Krishnarao, J. Subrahmanyam, T.J. Kumar, Studies on the formation of black particles in rice husk silica ash. J. Eur. Ceram. Soc. 21, 99–104 (2001)
V.P. Della, I. Kuhn, D. Hotza, Rice husk ash as an alternate source for active silica production. Mater. Lett. 57, 818–821 (2002)
W. Leenakul, T. Tunkasiri, N. Tongsiri, K. Pengpat, J. Ruangsuriya, Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica. Mat. Sci. Eng. C 61, 695–704 (2016)
T. Lee, R. Othman, F.Y. Yeoh, Development of photoluminescent glass derived from rice husk. Biomass Bioenerg. 59, 380–392 (2013)
F. Naghizadeh, M.R.A. Kadir, A. Doostmohammadi, F. Roozbahani, N. Iqbal, M.M. Taheri, S.V. Naveen, T. Kamarul, Rice husk derived bioactive glass-ceramic as a functional bioceramic: synthesis, characterization and biological testing. J. Non-Cryst. Solids 427, 54–61 (2015)
P.J. Ramadhansyah, A.W. Mahyun, M.Z.M. Salwa, B.A. Bakar, M.M. Johari, M.W. Ibrahim, Thermal analysis and pozzolanic index of rice husk ash at different grinding time. Procedia Eng. 50, 101–109 (2012)
A.M. Yusof, N.A. Nizam, N.A.A. Rashid, Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. J. Porous Mat. 17, 39–47 (2010)
T.H. Liou, Preparation and characterization of nano-structured silica from rice husk. Mat. Sci. Eng. A 364, 313–323 (2004)
A. Bahrami, M.I. Pech-Canul, C.A. Gutiérrez, N. Soltani, Wetting and reaction characteristics of crystalline and amorphous SiO2 derived rice-husk ash and SiO2/SiC substrates with Al–Si–Mg alloys. Appl. Surf. Sci. 357, 1104–1113 (2015)
D. Chopra, R. Siddique, Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst. Eng. 130, 72–80 (2015)
M.F. Serra, M.S. Conconi, M.R. Gauna, G. Suárez, E.F. Aglietti, N.M. Rendtorff, Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure. J. Asian Ceram. Soc. 4, 61–67 (2016)
D. Prasetyoko, Z. Ramli, S. Endud, H. Hamdan, B. Sulikowski, Conversion of rice husk ash to zeolite beta. Waste Manage 26, 1173–1179 (2006)
G. Gao, N. Da, S. Reibstein, L. Wondraczek, Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics. Opt. Express 18, A575-A583 (2010)
A.M. El-Kady, A.F. Ali, Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceram. Int. 38, 1195–1204 (2012)
B.J. Saikia, G. Parthasarathy, Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206 (2010)
E.G. Pantohan, R.T. Candidato Jr., R.M. Vequizo, Surface characteristics and structural properties of sol-gel prepared ZnO–SiO2 nanocomposite powders. IOP Conf. Ser. 79, 012024 (2015)
A.U. Rana, M. Kang, H.S. Kim, Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage. Sci. Rep. 6, 24870 (2015)
E.N. Bunting, Phase equilibria in the system SiO2–ZnO. J. Am. Ceram. Soc. 13, 5–10 (1930)
B. Li, M. Xu, B. Tang, Effects of ZnO on crystallization, microstructures and properties of BaO–Al2O3–B2O3–SiO2 glass-ceramics. J. Mater. Sci. Mater. Electron 27, 70–76 (2016)
N.A.S. Omar, Y.W. Fen, K.A. Matori, M.H.M. Zaid, M.R. Norhafizah, M. Nurzilla, M.I.M. Zamratul, Synthesis and optical properties of europium doped zinc silicate prepared using low cost solid state reaction method. J. Mater. Sci. 27, 1092–1099 (2016)
A.T.G. Kullberg, A.A.S. Lopes, J.P.B. Veiga, M.M.R.A. Lima, R.C.C. Monteiro, Formation and crystallization of zinc borosilicate glasses: influence of the ZnO/B2O3 ratio. J. Non-Cryst. Solids 441, 79–85 (2016)
G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J. Phys. Chem. B 106, 9753–9760 (2002)
H.A. Abo-Mosallam, H. Darwish, S.M. Salman, Crystallization characteristic and properties of some zinc containing soda lime silicate glasses. J. Mater. Sci. 21, 889–896 (2010)
T. Murata, Y. Moriyama, K. Morinaga, Relationship between the local structure and spontaneous emission probability of Er3+ in silicate, borate, and phosphate glasses. Sci. Technol. Adv. Mater. 1, 139–145 (2000)
A.M. Efimov, Vibrational spectra, related properties, and structure of inorganic glasses. J. Non-Cryst. Solids 253, 95–118 (1999)
C.I. Merzbacher, W.B. White, The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. J. Non-Cryst. Solids 130, 18–34 (1991)
T. Nakazawa, Infrared spectroscopy analysis and MNDO calculations for irradiation-Induced structural change of lithium ortho-silicate. JAERI-Conf. 006, (2005)
R.M.M. Morsi, S.I.A. El-Ghany, M.M. Morsi, Electrical properties of silicate glasses of low level gadolinium oxide doping including dielectric and infrared measures. J. Mater. Sci. 26, 1419–1426 (2015)
M.H.M. Zaid, K.A. Matori, H.A.A. Sidek, M.K. Halimah, Z.A. Wahab, Y.W. Fen, I.M. Alibe, Synthesis and characterization of low cost willemite based glass-ceramic for opto-electronic applications. J. Mater. Sci. 27, 11158–11167 (2016)
N.A. El-Alaily, W.M. Abdallah, B.A. Sabrah, A.I. Saad, Preparation and characterization of immobilizing radioactive waste glass from industrial wastes. Silicon 9, 117–130 (2017)
H. Darwish, S. Ibrahim, M.M. Gomaa, Electrical and physical properties of Na2O–CaO–MgO–SiO2 glass doped with NdF3. J. Mater. Sci. 24, 1028–1036 (2013)
J. Sułowska, I. Wacławska, M. Szumera, Comparative study of zinc addition effect on thermal properties of silicate and phosphate glasses. J. Therm. Anal. Calorim. 123, 1091–1098 (2016)
D. Singh, K. Singh, G. Singh, S. Mohan, M. Arora, G. Sharma, Optical and structural properties of ZnO–PbO–B2O3 and ZnO–PbO–B2O3–SiO2 glasses. J. Phys.-Condes. Matter 20, 075228 (2008)
M.H.M. Zaid, K.A. Matori, S.H. Ab Aziz, H.M. Kamari, Z.A. Wahab, N. Effendy, I.M. Alibe, Comprehensive study on compositional dependence of optical band gap in zinc soda lime silica glass system for optoelectronic applications. J. Non-Cryst. Solids 449, 107–112 (2016)
E.A. Davis, N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)
G. Upender, S. Ramesh, M. Prasad, V.G. Sathe, V.C. Mouli, Optical band gap, glass transition temperature and structural studies of (100 − 2x) TeO2–xAg2O–xWO3 glass system. J. Alloy. Compd. 504, 468–474 (2010)
U. Gnutzmann, K. Clausecker, Theory of direct optical transitions in an optical indirect semiconductor with a superlattice structure. Appl. Phys. Lett. 3, 9–14 (1974)
S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf, G. Lucovsky, Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry. J. Appl. Phys. 91, 4500–4505 (2002)
Z.A. Talib, Y.N. Loh, H.A.A. Sidek, W.M.D.W. Yusoff, W.M.M. Yunus, A.H. Shaari, Optical absorption spectrum of (LiCl)x(P2O5)1–x glass. Ceram. Int. 30, 1715–1717 (2004)
M.A. Chaudhry, S. Bilal, Concentration-dependent electrical conductivity of phosphate glasses containing zinc oxide. Mater. Chem. Phys. 41, 299–301 (1995)
S.C. Colak, I. Akyuz, F. Atay, On the dual role of ZnO in zinc-borate glasses. J. Non-Cryst. Solids 432, 406–412 (2016)
Acknowledgements
The researchers gratefully acknowledge the financial support for this study from the Malaysian Ministry of Higher Education (MOHE) and Universiti Putra Malaysia through the Fundamental Research Grant Scheme (FRGS) and Inisiatif Putra Berkumpulan (IPB) research grant.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, C.S., Matori, K.A., Ab Aziz, S.H. et al. Fabrication and characterization of glass and glass-ceramic from rice husk ash as a potent material for opto-electronic applications. J Mater Sci: Mater Electron 28, 17611–17621 (2017). https://doi.org/10.1007/s10854-017-7699-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-017-7699-3