Skip to main content
Log in

Enhanced optical properties of spherical zirconia (ZrO2) nanoparticles synthesized via the facile various solvents mediated solvothermal process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of various solvents on structural and optical properties of zirconia (ZrO2) nanoparticles was successfully synthesized by via the facile solvothermal process at mild temperature of 180 °C. The aims of this study were to identify how the solvents selection affects particle size and properties of the prepared materials. Structural characterization of the ZrO2 products using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the predominant crystal phase was the monoclinic phase. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images display particles of spherical shapes in nature and size of diameters in the range of 5–6.5 nm. By changing the solvent, we observed variations in particle size. The optical properties of the products were studied by ultraviolet–visible (UV–Vis) and photoluminescence (PL) emission spectroscopy, which was confirmed that the prepared ZrO2 nanoparticles are promising good candidate inorganic material for optoelectronics applications and new lighting devices. Furthermore, we discussed the mechanism of the solvothermal process and the critical roles of boiling point of solvents in the solvothermal formation of the small-sized ZrO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.L. Wu, S.Y. Wang, I.A. Rusakova, Science 285, 1375 (1999)

    Article  Google Scholar 

  2. S. Park, J.M. Vohs, R.J. Gorte, Nature 404, 265 (2000)

    Article  Google Scholar 

  3. V. Grover, R. Shukla, A.K. Tyagi, Scripta Mater. 57, 699 (2007)

    Article  Google Scholar 

  4. J.M. Phillips, J. Appl. Phys. 79, 1829 (1996)

    Article  Google Scholar 

  5. E.H. Kisi, C.J. Howard, Key. Eng. Mater. 153, 1 (1998)

    Article  Google Scholar 

  6. R.C. Garvie, J. Phys. Chem. 69, 1238 (1965)

    Article  Google Scholar 

  7. Y.W. Jun, J.S. Choi, J. Cheon, Angewandte Chem. 45, 3414 (2006)

    Article  Google Scholar 

  8. C. Tang, S. Fan, M.L. De La Chapelle, H. Dang, P. Li, Adv. Mater. 12, 1346 (2000)

    Article  Google Scholar 

  9. C. Stocker, A. Baiker, J. Non-Cryst. Solid 223, 165 (1998)

    Article  Google Scholar 

  10. T. Mimani, K.C. Patil, Mat. Phys. Mech. 4, 134 (2001)

    Google Scholar 

  11. J. Liang, X. Jiang, G. Liu, Z. Deng, J. Zhuang, F. Li, Y. Li, Mat. Res. Bull. 38, 161 (2003)

    Article  Google Scholar 

  12. Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, S.K. Date, Mater. Chem. Phys. 71, 235 (2001)

    Article  Google Scholar 

  13. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi, G.C. Pellacani, J. Am. Ceram. Soc. 84, 2728 (2001)

    Article  Google Scholar 

  14. S. Manjunatha, M.S. Dharmaprakash, Mater. Lett. 164, 476 (2016)

    Article  Google Scholar 

  15. P. Tonto, O. Mekasuwandumrong, S. Phatanasri, V. Pavarajarn, P. Praserthdam, Ceram. Int. 34, 57 (2008)

    Article  Google Scholar 

  16. X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  17. M. Mishraa, P. Kuppusami, A. Singha, S. Ramya, V. Sivasubramanian, E. Mohandas, Appl. Surf. Sci. 258, 5157 (2012)

    Article  Google Scholar 

  18. R. Kumar, P.F. Siril, P. Soni, Pyrotechnology 39, 383 (2014)

    Google Scholar 

  19. L. Sun, X. Fu, M. Wang, C. Liu, C. Liao, C. Yan, J. Lumin. 87, 538 (2000)

    Article  Google Scholar 

  20. T. Hyeon, Chem. Commun. 8, 927 (2003)

    Article  Google Scholar 

  21. L.A. Perez-Maqueda, E. Matijevi, J. Mater. Res. 12, 3286 (1997)

    Article  Google Scholar 

  22. Y.J. Kwon, K.H. Kim, C.S. Lim, K.B. Shim, J. Ceramic Proc. Res. 3, 146 (2002)

    Google Scholar 

  23. B. Wen, C. Liu, Y. Liu, New J. Chem. 29, 969 (2005)

    Article  Google Scholar 

  24. D.W. Kim, S.I. Shin, J.D. Lee, S.G. Oh, Matter. Lett. 58, 1894 (2004)

    Article  Google Scholar 

  25. S. Das, C.Y. Yang, C.h.. Lu, J. Am. Ceram. Soc. 96, 1602 (2013)

    Article  Google Scholar 

  26. H.Q. Cao, X.Q. Qiu, B. Luo, Y. Liang, Y.H. Zhang, R.Q. Tan, M.J. Zhao, Q.M. Zhu, Adv. Funct. Mater. 14, 243 (2004)

    Article  Google Scholar 

  27. T. Nishizaki, M. Okui, K. Kurosaki, M. Uno, S. Yamanaka, K. Takeda, H. Anada, J. Alloy. Comp. 330, 307 (2002)

    Article  Google Scholar 

  28. A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Langmuir 14, 5011 (1998)

    Article  Google Scholar 

  29. J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (North Holland Publishers, Amsterdam, 1970)

    Google Scholar 

  30. C. Lin, C. Zhang, J. Lin, J. Phys. Chem. C 111, 3300 (2007)

    Article  Google Scholar 

  31. K. Joy, J.I. Berlin, P.B. Nair, J.S. Lakshmi, G.P. Daniel, P.V. Thomas, J. Phys. Chem. Solids 72, 673 (2011)

    Article  Google Scholar 

  32. J. Liopis, Phys. Status Solid A 119, 661 (1990)

    Article  Google Scholar 

  33. P. Wongmaneenil, B. Jongsomjit, P. Praserthdam, J. Ind. Eng. Chem. 16, 327 (2010)

    Article  Google Scholar 

  34. D. Manoharan, A. Loganathan, V. Kurapati, V.J. Nesamony, Ultra. Sonochem. 23, 174 (2015)

    Article  Google Scholar 

  35. D. Adler, J. Feinleib, Phys. Rev. B 2, 3112 (1970)

    Article  Google Scholar 

  36. Y. Cong, B. Li, S. Yue, D. Fan, X.-j.. Wang, J. Phys. Chem. C 113, 13974 (2009)

    Article  Google Scholar 

  37. W. Huang, J. Yang, X. Meng, Y. Cheng, C. Wang, B. Zou, Z. Khan, Z. Wang, X. Cao, Chem. Eng. J. 168, 1360 (2011)

    Article  Google Scholar 

  38. G.K. Sidhu, A.K. Kaushik, S. Rana, S. Bhansali, R. Kumar, Appl. Surf. Sci. 334, 216 (2015)

    Article  Google Scholar 

  39. A.K. Singh, V. Viswanath, V.C. Janu, J. Lumniscence 129, 874 (2009)

    Article  Google Scholar 

  40. G. Demazeau, Res. Chem. Intermed. 37, 107 (2011)

    Article  Google Scholar 

  41. Y.C. Wu, Y.C. Tai, J. Nanopart. Res. 15, 1686 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandan, K., Rajesh, K. & Rajendran, V. Enhanced optical properties of spherical zirconia (ZrO2) nanoparticles synthesized via the facile various solvents mediated solvothermal process. J Mater Sci: Mater Electron 28, 17321–17330 (2017). https://doi.org/10.1007/s10854-017-7664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7664-1

Navigation