Skip to main content
Log in

Excellent thermal stability and low dielectric loss of (1 − x)BaTiO3 –xBi(Li0.5Nb0.5)O3 solid solutions in a broad temperature range applied in X8R

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)BaTiO3xBi(Li0.5Nb0.5)O3 [(1 − x)BT–xBLN, 0 ≤ x ≤ 0.1] lead-free ceramics were prepared via a conventional solid state reaction method. Raman spectra and X-ray diffraction results confirmed the phase transformation from tetragonal to pseudo cubic symmetry at 0 ≤ x ≤ 0.02. With adding Bi(Li0.5Nb0.5)O3, the thermal stability of permittivity and dielectric loss of ceramics were improved. Especially, 0.9BT–0.1BLN ceramics exhibited good dielectric properties with small Δε/ε25 °C values (≤ ± 15%) in a wide temperature range of −61–160 °C, high relative permittivity (~1500–1750) and low dielectric loss (tan δ ≤ 0.02) from −60 to 200 °C, which indicates that BT–BLN is candidate for X8R devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Ctibor, H. Seiner, J. Sedlacek, Z. Pala, P. Vanek, Ceram. Int. 39, 5039–5048 (2013)

    Article  Google Scholar 

  2. J. Chen, H.M. Chan, M.P. Harmer, J. Am. Ceram. Soc. 72, 593–598 (1989)

    Article  Google Scholar 

  3. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  4. B.A. Tuttle, D.A. Payne, Ferroelectrics 37, 603–606 (1981)

    Article  Google Scholar 

  5. S. Wongsaenmai, S. Ananta, R. Yimnirun, J. Alloys Compd. 474, 241–245 (2009)

    Article  Google Scholar 

  6. L.H. Luo, H.B. Chen, Y.J. Zhu, W.P. Li, H.S. Luo, Y.P. Zhang, J. Alloys Compd. 509, 8149–8152 (2011)

    Article  Google Scholar 

  7. J.Y. Xu, M. Jin, J. Tong, M.L. Shi, X.J. Wu, B.L. Lu, L.Q. Luo, J. Alloys Compd. 449, 36–39 (2008)

    Article  Google Scholar 

  8. Y. Yuan, S. Zhang, C. Li, J. Mater. Sci. Mater. Electron. 15, 601–606 (2004)

    Article  Google Scholar 

  9. E. Aksel, J.L. Jones, Sensors 10, 1935–1954 (2010)

    Article  Google Scholar 

  10. D.H. Park, Y.G. Jung, U. Paik, J. Mater. Sci. Mater. Electron. 15, 253–259 (2004)

    Article  Google Scholar 

  11. T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, J. Rödel, J. Am. Ceram. Soc. 95, 711–715 (2012)

    Article  Google Scholar 

  12. S.M. Choi, C.J. Stringer, T.R. Shrout, C.A. Randall, J. Appl. Phys. 98, 5999 (2005)

    Google Scholar 

  13. P. Pasierb, S. Komornicki, M. Radecka, J. Mater. Sci. Mater. Electron. 324, 134–140 (1998)

    Google Scholar 

  14. A. Zeb, S.J. Milne, J. Eur. Ceram. Soc 34, 3159–3166 (2014)

    Article  Google Scholar 

  15. J.G. Kim, W.P. Tai, Y.J. Kwon, K.J. Lee, W.S. Cho, N.H. Cho, C.M. Whang, Y.C. Yoo, J. Mater. Sci. Mater. Electron. 15, 807–811 (2004)

    Article  Google Scholar 

  16. J.B. Lim, S. Zhang, N. Kim, T.R. Shrout, J. Am. Ceram. Soc. 92, 679–682 (2009)

    Article  Google Scholar 

  17. Y.L. Wang, X.L. Chen, H.F. Zhou, L. Fang, L.J. Liu, H. Zhang, J. Alloys Compd. 551, 365–369 (2013)

    Article  Google Scholar 

  18. C. Ma, X. Tan, J. Appl. Phys. 107, 241 (2010)

    Google Scholar 

  19. C.C. Huang, D.P. Cann, X. Tan, N. Vittayakorn, J. Appl. Phys. 102, 136 (2007)

    Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  21. C.B. Long, H.Q. Fan, M.M. Li, G.Z. Dong, Q. Li, Scr. Mater. 75, 70–73 (2014)

    Article  Google Scholar 

  22. A. Scalabrin, A.S. Chaves, D.S. Shim, Phys. Status Solid. 79, 731–742 (1977)

    Article  Google Scholar 

  23. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, Phys. Rev. B 69, 092104 (2004)

    Article  Google Scholar 

  24. H. Yu, Z.G. Ye, J. Appl. Phys. 103, 034114 (2008)

    Article  Google Scholar 

  25. X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, J. Am. Ceram. Soc. 98, 804–810 (2014)

    Article  Google Scholar 

  26. M.K. Zhu, L.Y. Liu, Y.D. Hou, H. Wang, H. Yan, J. Am. Ceram. Soc. 90, 120–124 (2007)

    Article  Google Scholar 

  27. L. Dong, D.S. Stone, R.S. Lakes, J. Appl. Phys. 111, 084107 (2012)

    Article  Google Scholar 

  28. Z. Yu, C. Ang, R. Guo, A. Bhalla, Mater. Lett. 61, 326–329 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11664008, 11364012 and 11464009), Natural Science Foundation of Guangxi (Nos. 2015GXNSFDA139033 and 2014GXNSFAA118326), Research Start-up Funds Doctor of Guilin University of Technology (Nos. 002401003281 and 002401003282), and Project of Outstanding Young Teachers’ Training in Higher Education Institutions of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuli Chen or Huanfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, X., Huang, G. et al. Excellent thermal stability and low dielectric loss of (1 − x)BaTiO3 –xBi(Li0.5Nb0.5)O3 solid solutions in a broad temperature range applied in X8R. J Mater Sci: Mater Electron 28, 17278–17282 (2017). https://doi.org/10.1007/s10854-017-7659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7659-y

Navigation